
Copyright © 2009 by forceAmp.com. All rights reserved.

forceAMP.com

DBAmp
SQL Server Integration with Salesforce.com

Version 3.1.5

2

Table of Contents

Acknowledgments .. 6

Chapter 1: Installation/Upgrading .. 7

Upgrading an existing installation ... 7

Prerequistes ... 7

Restrictions with Professional Edition .. 8

Running the DBAmp installation file.. 8

Configure the DBAmp provider options ... 8

Connecting DBAmp to SQL Server .. 8

Verifying the linked server ... 10

Install the DBAmp Stored Procedures ... 10

Running the DBAmp Configuration Program.. 10

Pointing DBAmp to your Salesforce Sandbox Instance 11

Chapter 2: Using DBAMP as a Linked Server 12

Four Part Object Names .. 12

SQL versus SOQL .. 12

Using the four part object name and SQL ... 12

Using OPENQUERY and SOQL .. 13

Inserting rows using SQL ... 15

Updating and Deleting rows using SQL ... 16

Joining Salesforce.com Tables ... 17

Analyzing Performance when Joining Tables 17

Using BIT datatype with DBAmp .. 19

Using Dates with DBAmp ... 19

Using DBAmp System Tables (sys_sf tables) 20

Using Count() with salesforce.com objects .. 21

Using DBAmp to convert currency amounts to a default currency 21

Using DBAmp to return translated values for picklists 22

Retrieving Archived and Deleted records .. 22

Using Column Subset views ... 23

DBAmp and Salesforce API call Counts ... 24

Chapter 3: Making Local Copies of Salesforce Data 25

How to run the SF_Replicate proc to make a local copy 25

Viewing the job history .. 27

3

Replicating all Salesforce Objects ... 27

How to run the SF_ReplicateAll proc to replicate all objects 27

Copying only the rows that have changed .. 28

Replicating Large Tables .. 28

Including Archived and Deleted rows in the local copy......................... 28

Best Practices for Replicate and Refresh schedules 29

Chapter 4: Bulk Insert, Upsert, Delete and Update into Salesforce30

Checking the Column Names of the Input Table.................................. 30

Using External Ids as Foreign Keys (without bulkapi switch) 31

Using External Ids as Foreign Keys (with bulkapi switch) 32

Understanding the Error Column .. 32

Bulk Inserting rows into Salesforce .. 32

Bulk Upserting rows into Salesforce .. 33

Bulk Updating rows into Salesforce .. 33

Bulk Deleting rows from Salesforce .. 34

Bulk UnDeleting rows from Salesforce .. 34

Controlling the batch size .. 34

How to run the SF_BulkOps proc ... 34

How to run the SF_BulkOps proc without using xp_cmdshell 36

Understanding SF_Bulkops failures (Web Services API) 37

Using the Bulk API with SF_BulkOps ... 38

Controlling the batch size with the Bulk API .. 39

Understanding a Sort Column when using the Bulk API 39

Using the HardDelete operation with the Bulk API 40

Controlling Concurrency Mode with the Bulk API 40

Using Optional SOAP Headers .. 40

Converting Leads with SF_Bulkops ... 41

Chapter 5: Using SSIS with DBAmp ... 44

Create a Connection for DBAmp ... 44

Using DBAmp as an OLE DB Source ... 44

Pushing Data to Salesforce.com using SSIS .. 45

Chapter 6: Uploading files into Content, Documents and Attachments 48

Chapter 7: Creating Database Diagrams and Keys 52

Creating a Primary Key .. 53

Creating Foreign Keys ... 53

4

Creating a Database Diagram .. 53

Chapter 8: Using Excel with Views to Linked Server Tables 55

Create Views of the SALESFORCE linked server tables 55

Using Excel ... 56

Chapter 9: DBAmp Stored Procedure Reference 61

SF_BulkOps .. 62

SF_ColCompare .. 67

SF_CreateKeys .. 68

SF_DropKeys .. 69

SF_Generate ... 70

SF_Refresh ... 71

SF_RefreshIAD ... 73

SF_RefreshAll ... 74

SF_Replicate ... 76

SF_ReplicateHistory .. 78

SF_ReplicateAll ... 79

SF_ReplicateIAD ... 81

SF_ReplicateLarge ... 82

Chapter 10: DBAmp Registry Settings ... 84

Metadata Override .. 84

Base64 Maximum Field Size: .. 84

Receive Timeout ... 84

BulkAPI Polling Interval ... 85

BulkAPI Status Timeout ... 85

Use ConvertCurrency Function ... 85

Use ToLabel Function .. 85

TriggerAutoResponseEmail, TriggerOtherEmail, TriggerUserEmail 85

UseDefaultAssignment ... 86

Chapter 11: Retrieving Salesforce Metadata 87

How to run the SF_Metadata proc .. 87

Using the LIST and RETRIEVE operations ... 87

Requirements for the input table .. 88

Example: Retrieve Dependent Picklist Information 90

Example: Retrieve Field Descriptions .. 91

Chapter 12: Using DBAmp Performance Package 93

5

Installing the DBAmp Performance Package .. 93

Using the DBAmp_Log Table ... 95

Using the Performance Views .. 96

DBAmp_Replicate_Perf view .. 96

DBAmp_Refresh_Perf view .. 97

DBAmp_BulkOps_Perf view.. 98

Using Excel with the Performance Views ... 99

6

Acknowledgments
Thanks to Sarah Parra of Microsoft. Without her excellent support, DBAmp
wouldn’t exist.

Also, thanks to Dave Carroll at Salesforce.com for being the "Original"
sForce programmer. Dave's sample code always points the way for the rest
of us.

And finally, thanks to those customers who have contributed ideas and
designs for several important features of DBAmp:

C.J. Land Local copy replication

Andy Hilliard Sys_sfPickList

Darrell Grissen Sys_sfLastId

Tad Tjornhom Bulk Inserting

Paul Coyne sf_replicateIAD

John Gee Metadata support

7

Chapter 1: Installation/Upgrading

Upgrading an existing installation

If you are upgrading an existing installation, please do the following.

1. Stop SQL Server.

2. Run the DBAmp installation program. You will need your serial
number for installation. Please contact support@forceamp.com if
you need help with this value.

3. Your previous linked server definition can be use without
modification.

4. The DBAmp stored procedures change with every release. You must
upgrade every SQL database that currently contains DBAmp stored
procs with the new versions. Follow the instructions in the Install
the DBAmp Stored Procedures section later in this chapter.
Failure to do this will result in errors.

5. Because the new version may connect to a newer API endpoint,
additional fields and objects may become visible with the upgrade.
If you are using sf_refresh for local copies, you must run
sf_replicate on that object to pickup these schema changes. Then
you can resume your normal sf_refresh schedule.

Note that there are major, breaking changes that have occurred recently
with DBAmp.

- DBAmp only supports SQL 2005 or higher.

- DBAmp only supports Windows 2008 R2 or higher.

- SQL 2008 or greater and datetime2(7). On SQL 2008 or greater
systems, date and datetime fields of salesforce.com objects are now
created as datetime2(7) fields in the local database. To force these fields
to be created as datetime fields instead, set the Database Compatibility
Level of the Salesforce backup database to 90 prior to replicating the data
(step 5 above). This change applies to SQL 2008 and greater only.

Prerequistes

Before installing DBAmp, make sure that an instance of SQL Server 2005 or
greater is installed on the machine. If you do not have SQL Server, you
may download the SQL Server 2008 Express with Database Tools, which is
available for free from Microsoft. In addition, be aware that DBAmp only
supports Windows 2008 R2 or higher.

IMPORTANT: If you are using SQL Server Express, make sure you
download the package from Microsoft that contains the Database

mailto:support@forceamp.com

8

Tools. You will need the SQL Management Studio tool to complete
the DBAmp installation.

There is an outstanding Microsoft issue that affects DBAmp. This issue only
occurs when the service account that you specify for SQL Server is the
Network Service account. Please use a different service account (like a
user account) for the SQL Server instance. We recommend that you use the
LocalSystem account or an admin domain.

Restrictions with Professional Edition

DBAmp works with the Professional Edition of salesforce but certain
functions like the bulkapi option and the metadata support are not available
unless the customer purchases the api option from salesforce.com.

Running the DBAmp installation file

To install DBAmp, unzip the DBAmp package to a temporary directory and
run the Setup program. Setup will prompt you for the DBAmp program
directory and install the software.

To uninstall DBAmp, use the Windows Add/Remove Programs option on t he
control panel.

Configure the DBAmp provider options

NOTE: DO NOT SKIP THIS STEP. DBAMP WILL NOT FUNCTION PROPERLY.

Expand the Providers tree entry in the Object Explorer (Server
Objects/Linked Servers/Providers). Right click the DBAmp.DBAmp provider
entry and choose Properties.

Check the following (leaving all other options unchecked):

Dynamic Parameters

Allow InProcess

Non transacted Updates

Verify the above options for proper operation of the provider.

The next step is to create the linked server.

Connecting DBAmp to SQL Server

Also, please see the note at the beginning of the chapter concerning the
Microsoft issue of using Network Service as the SQL Server Service
account.

9

DBAmp is designed to be used as a linked server. To install DBAmp as a
linked server, use the SQL Management Studio and perform the following
steps:

1. Using the SQL Server Management Studio, use the Object Explorer
window and expand the Server Objects branch to display Linked
Servers.

2. Right click on Linked Servers and choose New Linked Server...

Enter the following information for the new Linked Server:

General Page

Linked Server: Enter SALESFORCE

Provider: Choose DBAmp OLE DB Provider

Product Name: Enter DBAmp

Location: If you are connecting to a sandbox, enter
https://test.salesforce.com. Otherwise, leave blank.

Security Page

Click Be made using this security context:

For Remote Login:, enter your salesforce.com UserId.

For With password: enter your salesforce password. If needed by
your salesforce organization, append the salesforce security token to
the end of the password. For more details on salesforce security
tokens, see the Security Tokens section in the online salesforce
help.

Server Options

Check the following are true (leaving all other options false):

 Collation Compatible

 Data Access

 Use Remote Collation

 RPC Out

 Enable Promotion of Distributed Transactions

3. Press OK to create the SALESFORCE linked server.

https://test.salesforce.com/

10

Verifying the linked server

Use the following procedure to verify that the linked server is set up
correctly:

Execute the following query using the SQL Management Studio:

Select * from SALESFORCE...sys_sfobjects

You should see a list of all your salesforce.com objects.

Install the DBAmp Stored Procedures

The next step to install DBAmp is to create a database and create the
DBAmp stored procedures. The database you create contains not only the
DBAmp stored procedures but also the local replicated tables you make
from your live Salesforce.com data.

To install the DBAmp Stored Procedures:

1. 1. Using either the SQL Enterprise Manager or the SQL Management
Studio, create a new database named salesforce backups. . This
database will hold all the local replicated tables as well as the
DBAmp stored procedures.

2. Open the file “Create DBAmp SPROCS.sql” in Query Analyzer or
Management Studio but do not execute it yet. The file is located in
the \Program Files\DBAmp\SQL directory.

The stored procedures assume that you have installed DBAmp in the
directory c:\"Program Files"\DBAmp. If you used an alternate drive
or directory, you must find all occurrences of C:\"Program
Files"\DBAmp\ and replace them with the correct directory.

3. Make sure that default database shown on the toolbar is the
salesforce backups database (and not the main database). Then,
execute (F5) to add the stored procedures to the database.

Running the DBAmp Configuration Program

In order for the DBAmp stored procedures to work properly, you must run
the DBAmp configuration program and enter your SQL credentials along
with any additional proxy information needed by DBAmp.

You must display the Options dialog and press OK for the settings
to be saved (press OK even if you do not make changes).

Note: Normally, DBAmp handles the proxy automatically. If you are having
trouble connecting or need to setup your proxy information manually, you

can use the DBAmp Configuration Program to enter your proxy information.

To run the DBAmp Configuration Program:

11

1. From the Start menu, run the DBAmp Configuration program
located under DBAmp. Under the Configuration menu, select

Options.

2. Enter your SQL credentials. If you are using Windows
Authentication, use the default value of
Trusted_Connection=Yes

3. If you need to enter proxy information, check the Use Proxy for

Salesforce connection checkbox.

4. Enter the appropriate proxy information:

Proxy Username - Username for the proxy login.

Proxy Password - Password for the above username.
Proxy URL - Direct proxy URL.

Proxy ConfigURL - Proxy script URL.

When a script URL is set but the proxy address cannot be accessed, for
example, the address is only available inside a corporate network but
the user is logging in from home, DBAmp will use the direct URL if it
has been set, or try a direct connection if the direct URL has not been
set.

If a direct URL is set and it cannot be accessed, DBAmp will not try a
direct connection. This is the same behavior as Internet Explorer.

Click OK. The credentials are stored in encrypted form for use by
the DBAmp stored procedures.

Pointing DBAmp to your Salesforce Sandbox Instance

By default, DBAmp points to your production Salesforce.com instance. If
you need to change DBAmp to point to your Sandbox instance or need to
use a different endpoint for DBAmp, alter the Location parameter of your
linked server.

The Location parameter is normally blank. If your Sandbox Instance is at
https://test.salesforce.com then you would enter
https://test.salesforce.com for the Location Parameter on the linked server
properties page.

12

Chapter 2: Using DBAMP as a Linked Server

When using DBAmp as a linked server, you can access salesforce.com
tables as if they were SQL server tables.

Four Part Object Names

To refer to a salesforce.com object in a SQL statement, use the four part
object name containing the name of the linked server and the object name
separated by three periods. For example, to select all rows and columns of
the Contact object:

Select * from SALESFORCE…Contact

The linked server name (SALESFORCE) and the table name (Contact) are
case sensitive.

SQL versus SOQL

There are 2 ways to query real time data from salesforce: use the four part
object name with SQL or use the OpenQuery clause with SOQL.

Using the four part object name and SQL

You may use the full Transact SQL syntax when entering SQL statements.
Internally, SQL Server and DBAmp will translate your SQL statement into
the appropriate SOQL statements for salesforce.com. Any elements that
cannot be done in SOQL (like SQL functions) will be done locally by the SQL
Server Distributed Query optimizer after retrieving the result set from
salesforce.com.

The SQL Server Distributed Query Optimizer will choose a plan for every
SQL statement that executes. Often, the plan chosen will be the most
efficient and there will be no need to modify your SQL.

Should you suspect a poorly performing plan, use the Query Analyzer and
enter the text of the SQL statement. Remember to use the 4 part naming
convention for the Salesforce.com tables, i.e. SALESFORCE…Account.

For maximum performance when joining, consider using the OpenQuery
clause with SOQL (described in the next section.

Note the following when using SQL:

 Do not enter unquoted date literals. Instead, use Transact SQL
syntax for date literals (i.e. include quotes)

 For SOQL Boolean fields, use quoted litera ls (‘false’ instead of
false).

 You may use * to indicate all columns.

13

 Following Transact SQL rules for where clause AND/OR precedence.
Parentheses are only needed when explicit grouping is needed and
are not required (unlike SOQL).

 User and Case are keywords in Transact SQL and must be quoted
when used as a four part name to refer to the salesforce.com
object. For example, specify the User Object as SALESFORCE…[User]

Using OPENQUERY and SOQL

When additional join performance is needed, consider using the
OPENQUERY clause with DBAmp. Using OPENQUERY allows you to pass
salesforce.com SOQL statements (not SQL) directly to DBAmp. A full
description of the SOQL language can be found on the salesforce.com
website at :

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTop
ic=Content/sforce_api_calls_soql.htm

Using OPENQUERY with SOQL can make dramatic performance differences
on data that is joined. With SOQL, the join is performed back at the
salesforce.com server as opposed to locally at the SQL server.

select * from openquery(salesforce,

'SELECT Type, BillingCountry,

 GROUPING(Type) grpType, GROUPING(BillingCountry) grpCty,

 COUNT(id) accts

FROM Account

GROUP BY CUBE(Type, BillingCountry)

ORDER BY GROUPING(Type), GROUPING(BillingCountry)')

- DBAmp currently supports both child to parent relationship
queries and Parent to child queries.

For example,

select * from openquery(salesforce,

'SELECT Account.Name, (SELECT OwnerId FROM Account.Notes) FROM

Account')

select * from openquery(salesforce,

'SELECT Id, Who.FirstName, Who.LastName FROM Task');

- The where clause of the SOQL statement must be expressed using
SOQL syntax, not SQL syntax.

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql.htm
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql.htm

14

 For example,

Select * from OpenQUery(SALESFORCE,

'Select Opportunity.Account.Name,

Opportunity.Account.AnnualRevenue, Opportunity.Name,

Opportunity.CloseDate, Opportunity.StageName, Description,

Quantity

From OpportunityLineItem

Where (Opportunity.Account.AnnualRevenue >200 AND

Opportunity.CloseDate < 2009-08-29)')

is a supported SOQL statement because the date value is not in quotes.

Select * from OpenQuery(SALESFORCE,'SELECT Id FROM Account

WHERE Owner.CreatedDate = LAST_N_DAYS:200')

is also supported because it uses a SOQL date literal.

Note that datetime constants must be entered in ISO8601 format per the
SOQL requirements.

Understanding hierarchical salesforce.com data when
using OPENQUERY and SOQL

Note: The following is only applicable when using SOQL and OPENQUERY.
When joining the linked server tables using standard SQL, the result table is
constructed using normal relational concepts and not as describe here.

For OPENQUERY SOQL, DBAmp uses a special algorithm to "flatten" parent-
child salesforce.com data into a two-dimensional table.

SQL Server results are two-dimensional with rows and columns. Because
salesforce.com data can have more than two dimensions, a flattening
algorithm is used to force the data into a two-dimensional format.

When flattening salesforce.com data in SQL Server, the column headings
are an indication of the source of the column and essentially contain the
navigation through the "tree" of returned data to get to that column. You
can read the column structure backwards to get to the root object, the
lookup objects, and related lists. For example, the column
Account_LastModifiedBy_Alias is the Alias field of the LastModifiedBy lookup
object for the Account root object.

There is a row of the root object for each object in a related list. When
there are two related lists, the root object in the flattened result gets
repeated by the sum of the count of all of the rows of the related lists. For
example, if an Account root object has five Contacts and eight Cases, the
root-object data is repeated in the result table thirteen times.

15

In the flattened result, fields of the Contact related list are shown with the
root object, along with fields of the Cases related list and the root object.
For rows where Contact data is returned, the Cases columns are null; for
rows where Cases data is returned, the Contact columns are null. The fields
are null because there really is no relationship between Contacts and Cases.

When the query contains a root object and multiple rela ted lists, DBAmp
repeats the root-object data, the sum of the count of all of the related lists.
For example, if five related lists each had five items in them, the root
object is repeated 25 times. Rows for related lists are displayed and the
values in each row for the other related lists are null because they are not
applicable.

Passing Parameters in SOQL queries

To use parameters in a SOQL query, you must use the EXECUTE statement
of T-SQL. Here is an example:

CREATE TABLE RevByAccount

(Name nvarchar(255) NULL,

 AnnualRevenue decimal(18,0) NULL

);

DECLARE @MinRev INT

SET @MinRev = 20

INSERT RevByAccount

EXEC ('SELECT Name, AnnualRevenue FROM Account WHERE

AnnualRevenue > ?',

 @MinRev) AT Salesforce

go

Inserting rows using SQL

To insert new rows, use the standard SQL Insert statement. Do not include
the read-only columns (i.e. Id, LastModifiedId, etc.) in the fields list. For
example, to insert a new Note use the following SQL:

INSERT INTO SALESFORCE...Note (Body, IsPrivate, ParentId, Title)

VALUES('Body of Note 2','false', '00130000005ZsG8AAK','ToDelete')

16

For maximum scalability, please consider using the sf_bulkops stored
procedure instead of SQL Insert statement. The sf_bulkops stored
procedure takes advantage of the abi lity to batch together insert requests
to the salesforce.com api.

Updating and Deleting rows using SQL

DBAmp supports updating and deleting Salesforce.com objects with SQL.
In order to get the maximum performance with your UPDATE and DELETE
statements, you need to understand how SQL Server handles
UPDATE/DELETE statements with a linked server (like DBAmp).

For example, take the following SQL UPDATE

Update SALESFORCE…Account

 Set AnnualRevenue = 4000

 Where Id='00130000005ZsG8AAK'

Using the Display Estimated Execution Plan option from the Query
Analyzer, you can see that SQL Server will retrieve the entire Account
table from Salesforce and then search for the one row that has the Id of
00130000005ZsG8AAK. Then, SQL Server will update the AnnualRevenue o f
that row.

Obviously, this UPDATE statement has poor performance which gets worse
as the size of the Account table grows. What we need is a way to retrieve
only the row with Id 00130000005ZsG8AAK and then update the
AnnualRevenue of that row. To do this, use an OPENQUERY clause as the
table name.

Update OPENQUERY(SALESFORCE,

 'Select Id, AnnualRevenue from Account

 where Id=''00130000005ZsG8AAK'' ')

 set AnnualRevenue = 4000

Using an OPENQUERY clause insures that we retrieve only the row with the
proper Id.

You can construct stored procedures that make your code more readable
and that use the above technique. See the Create SF_UpdateAccount.sql
file in the DBAmp program directory as an example. Using this stored
procedure, we can do updates to the Account table using the following SQL:

exec SF_UpdateAccount '00130000008hz55AAA','BillingCity','''Denver'''

or

exec SF_UpdateAccount '00130000008hz55AAA','AnnualRevenue','20000'

17

You can use the SF_UpdateAccount stored procedure as a template for
building your own specialized stored procedures. See the file Create
SF_UpdateAnnualRevenue.sql for an example. Then, use the following
SQL to update the Annual Revenue of an account.

exec SF_UpdateAnnualRevenue '00130000009DCEcAAO', 30000

Deleting rows with SQL has the same caveats. For best performance with
deletion by Id, use an OPENQUERY clause in the SQL statement. An
example of a stored procedure that deletes Accounts by Id is in the file
Create SF_DeleteAccount.sql.

For maximum scalability, please consider using the sf_bulkops stored
procedure instead of SQL Update or Delete statements. The sf_bulkops
stored procedure takes advantage of the ability to batch together requests
to the salesforce.com api.

Joining Salesforce.com Tables

Using joins, you can retrieve data from two or more tables based on logical
relationships between the tables. Joins indicate how SQL Server should use
data from one table to select the rows in another table.

Joins can be specified in either the FROM or WHERE clauses. The join
conditions combine with the WHERE and HAVING search conditions to
control the rows that are selected from the base tables referenced in the
FROM clause.

Specifying the join conditions in the FROM clause helps separate them from
any other search conditions that may be specified in a WHERE clause.

In addition, consider using the OPENQUERY and SOQL feature (see
above) for maximum performance when joining to salesforce.com
tables.

Analyzing Performance when Joining Tables

The SQL Server Distributed Query Optimizer will choose a plan for every
SQL statement that executes. Often, the plan chosen will be the most
efficient and there will be no need to modify your SQL.

Should you suspect a poorly performing plan, use the Query Analyzer and
enter the text of the SQL statement. Remember to use the 4 part naming
convention for the Salesforce.com tables, i.e. SALESFORCE…Account.

Choose the Display Estimated Execution Plan option from the Query
menu to view the execution plan.

While a full discussion of execution plans is beyond this document, most
SQL Select with join statements involving Salesforce.com data will choose
to either return the entire result set of a table or read the needed rows
with a parameterized query.

18

For example, consider the following SQL Select:

Select T1.Name, T2.Salutation, T2.FirstName, T2.LastName
from SALESFORCE...Account as T1, SALESFORCE...Contact as T2
where T1.Id = T2.AccountId and T1.AnnualRevenue > 20000

Here is the initial execution plan:

|--Hash Match(Inner Join, HASH:
 ([SALESFORCE]...[Account].[Id])=([SALESFORCE]...[Contact].[AccountId]),
RESIDUAL:([SALESFORCE]...[Contact].[AccountId]=[SALESFORCE]...[Accou
nt].[Id]))

|--Remote Query(SOURCE:(SALESFORCE), QUERY:(SELECT T1."Id"
Col1004,T1."Name" Col1005 FROM "Account" T1 WHERE
T1."AnnualRevenue">(20000.0000)))

|--Remote Query(SOURCE:(SALESFORCE), QUERY:(SELECT
T2."AccountId" Col1007,T2."LastName" Col1010,T2."FirstName"
Col1008,T2."Salutation" Col1011 FROM "Contact" T2))

This plan will bring down from the Salesforce.com server all of the Cont act
records. If most of our Accounts have Annual Revenue of > 20000, then
the plan is efficient because most of the Contact records will be needed.

If, however, only 3 Accounts have AnnualRevenue > 20000 and the other
1000 Accounts do not, then the plan is inefficient. The Contact query will be
retrieving more Contact records than we actually need to build the result
set.

Let’s change the SQL Select to use an inner remote join:

Select T1.Name, T2.Salutation, T2.FirstName, T2.LastName
from SALESFORCE...Account as T1
inner remote join SALESFORCE...Contact as T2 on T1.Id = T2.AccountId
where T1.AnnualRevenue > 20000

Now the execution plan shows a different choice.

 |--Nested Loops(Inner Join, OUTER
REFERENCES:([SALESFORCE]...[Account].[Id]))

|--Remote Query(SOURCE:(SALESFORCE), QUERY:(SELECT T1."Id"
Col1010,T1."Name" Col1011 FROM "Account" T1 WHERE
T1."AnnualRevenue">(20000.0000)))

|--Remote Query(SOURCE:(SALESFORCE), QUERY:(SELECT
T2."Salutation" Col1007,T2."FirstName" Col1004,T2."LastName"
Col1006 FROM "Contact" T2 WHERE T2."AccountId"=?))

In the Contact Query, we will now use a parameter in the query
(“AccountID”=?) to read only the contact records we need. This is a much
more efficient way to get the same result.

19

Using BIT datatype with DBAmp

When returning results to SQL Server, DBAmp must choose a datatype to
use for salesforce.com Checkbox fields. By default, DBAmp uses
VARCHAR(5) and populates the column with either the values of FALSE or
TRUE.

If you are using SQL Server 2005 or later, you may wish to use the BIT
datatype instead for salesfore.com Checkbox fields. Use RegEdit and alter
the value of LOCAL_MACHINE/SOFTWARE/DBAmp/BitBoolean to a value of
1. Then restart SQL Server for the new value to take effect.

If you are replicating tables locally, you must run a replicate of those tables
after changing this setting. This will recreate the tables using the BIT
datatype.

Using Dates with DBAmp

When returning results to SQL Server, DBAmp converts Datetime values
from UTC into the local timezone.

In addition, any datetime values used in a WHERE clause are assumed to be
local times and not UTC times.

If you would prefer to have DBAmp always use UTC for all datetime values,
you can modify the DBAmp registry settings with the following procedure.
Note: this is not recommended but possible. Please contact forceAmp.com
support to understand the ramifications of UTC and DBAmp.

1. Using the Start/Run option, run the regedit program.

2. Navigate to the following key: HKEY_LOCAL_MACHINE / Software /
DBAmp .

3. Right click DBAmp and choose New DWORD Value. Name the key
NoTimeZoneConversion (watch case and spelling).

4. Right click the newly created NoTimeZoneConversion and choose
Modify. Then assign a value of 1.

20

Using DBAmp System Tables (sys_sf tables)

In addition to the Salesforce.com tables, DBAmp also provides various
system tables that you can access with SQL SELECT statements. These
tables are read-only; they cannot be updated or deleted.

Also, Select statements for these tables cannot contain a WHERE clause. If
you need to use a WHERE clause, define a user-defined-function that
encapsulates the table. See Create DBAMP UDFS.sql for an example.

Table Name Contents

sys_sfsession

Select * from SALESFORCE…sys_sfsession

The sys_sfsession table contains
information about the current
Salesforce.com session. Some of the
columns in this table are:

SessionId – Current Session Id

OrganizationId – 18 char OrgId
ServerURL – URL of SForce Server

sys_sfpicklists

Select * from SALESFORCE…sys_sfpicklists

The sys_sfpicklists table contains
information about the picklist values for
each picklist field There is one row for
each per picklist value. Some of the
columns in this table are:

ObjectName – Name of object
FieldName – Field of the above object

PickListValue – A single picklist value

PickListLabel – Label for the above value

sys_sfobjects

Select * from SALESFORCE…sys_sfobjects

The sys_sfobjects table contains
information about the Salesforce.com
objects. There is one row for each object
in your organization. Some of the
columns in this table are:

Name – Name of object

Createable – Is object createable ?

Deletable – Is object deletable ?
URLDetail – URL Detail for this object

URLNew – URL New for this object

21

sys_sffields

Select * from SALESFORCE…sys_sffields

The sys_sffields table contains
information about the Salesforce.com
object fields. There is one row for each
object field in your organization. Some of
the columns in this table are:

ObjectName – Name of object
Name – Name of the field

Createable – Is the field insertable ?

Type – Field Type using sf terminology
SQLDefinition – SQL Column definition

Using Count() with salesforce.com objects

There are two methods of obtaining a row count of salesforce.com objects.

The first method uses the following SQL:

Select Count() from SALESFORCE…Account

This SQL statement executes by retrieving all the Id values of the object
and counting the total number of Id values fetched. While this method
performs quickly for small tables, large tables perform badly because a ll the
Id’s are fetched to the local SQL Server to be counted.

The second method performs much better because it takes advantage to
the salesforce api SOQL Count function:

Select * from

OPENQUERY(SALESFORCE,'Select Count() from Account')

In the OPENQUERY clause, replace SALESFORCE with the name of your
link server. Also, notice that the table name Account is NOT prefixed with
"SALESFORCE…" .

Using DBAmp to convert currency amounts to a default currency

International organizations can use multiple currencies in opportunities,
forecasts, reports, and other currency fields. The administrator sets the
"corporate currency," which reflects the currency of the corporate
headquarters.

If an organization is multicurrency enabled, you can configure DBAmp to
convert currency fields to a single currency. DBAmp uses the default
currency of the salesforce.com user id configured in the link server. DBAmp

22

converts currencies using the ConverCurrency() function of the
salesforce.com API.

Note that the default is NOT to convert currencies. You must set the
registry entry ConvertCurrency in the DBAmp hive for currency conversions
to occur. The ConvertCurrency registry setting is found under the following
registry key:

LOCAL_MACHINE\SOFTWARE\DBAmp\ConvertCurrency

A value of 1 causes the conversion to occur. A SQL restart is required after
modifying this value.

SOQL statements entered via an OPENQUERY phrase do not honor this
setting. If you need to convert currency inside an OPENQUERY, then use
the CONVERTCURRENCY function:

select * from openquery(salesforce,

'Select Id, convertcurrency(annualrevenue), ToLabel(type)

from Account')

Using DBAmp to return translated values for picklists

If an organization uses multiple languages, you can configure DBAmp to
return translated values for picklist fields by using the ToLabel function.

Note that the default is NOT return translated values. You must set
the registry entry ToLabel in the DBAmp hive to use translated values. The
ToLabel registry setting is found under the following regist ry key:

LOCAL_MACHINE\SOFTWARE\DBAmp\ToLabel

A value of 1 causes the ToLabel function to be used. A SQL restart is
required after modifying this value.

SOQL statements entered via an OPENQUERY phrase do not honor this
setting. If you need to return translated values inside an OPENQUERY,
then use the ToLabel function:

select * from openquery(salesforce,

'Select Id, convertcurrency(annualrevenue), ToLabel(type)

from Account')

Retrieving Archived and Deleted records

Normally, the salesforce api does not return archived and deleted records
as part of the result of a query. Therefore, the query result from DBAmp
does not contain these records.

23

If you would like to include the archived and deleted records, add the
_QueryAll prefix to the table name. For example, the following query
retrieves only the task records that have been archived:

Select * from SALESFORCE…Task_QueryAll
where IsArchived = 'true'

You may also replicate all records including archived and task records to a
local table by using the sf_replicateIAD stored procedure. See the
SF_ReplicateIAD section in chapter DBAmp Stored Procedure Reference.

Using Column Subset views

Objects in salesforce that contain over 325 columns may produce an error
when either replicated or refreshed. The error occurs because the maximum
limit of the Select query statement in the salesforce api is 10,000
characters. A large number of columns in an object will produce a Select
query larger than 10,000 characters.

The solution is to take advantage of Column Subset views. These views
represent a user specified subset of the columns designed to 'fit' within the
10,000 character limit.

By attaching a specific suffix to the table name, DBAmp will include only
those columns with names that fall within the alphabetic range. For
example, the following SQL statement will return all columns with names
beginning with any letter between A and M inclusive:

Select * from SALESFORCE…Account_ColumnSubsetAM

Some system columns are returned unconditionally for every subset view.
The Id, SystemModstamp, LastModifiedDate, and CreatedDate columns are
always returned.

The suffix must have the following format: a single underscore, the word
ColumnSubset and two single letters indicating the alphabetic range.

In order to retrieve a full copy of the object data, use two or more column
subset views. For example, to replicate a large Account using column
subset views use the following command:

Exec sf_replicate 'SALESFORCE','Account_ColumnSubsetAM'

Exec sf_replicate 'SALESFORCE','Account_ColumnSubsetNZ'

Note that there is nothing special about the column partition used.
Account_ColumnSubsetAK and Account_ColumnSubsetLZ would work
equally as well.

24

Column Subset Views can be used in Select statements (but not
OPENQUERY) as well as the sf_replicate and sf_refresh stored procedures.

DBAmp and Salesforce API call Counts

Like all third party salesforce.com tools, DBAmp uses the salesforce.com api
to send and receive data from salesforce.com. Every salesforce.com
customer has a limit on the total number of API calls they can execute, org
wide, from all tools they are using. This limit is found on the Company
Information screen in the salesforce.com application.

Here are some rough guidelines for api call counts for various operations in
DBAmp:

SELECT against link server tables, SF_Replicate and SF_Refresh –
DBAmp requests data in batches of 2000 records. The salesforce server
may reduce that amount based on the width of the row. Our experience
has been that the average batch size is 1000. So for every 1000 rows of
data retrieved = 1 API call

UPDATE and INSERT statements – 1 api call for each record updated or
inserted.

SF_Bulkops without the bulkapi switch – 1 api call for each batch of
200 records.

SF_Bulkops with the bulkapi switch – 1 api call for each batch of
10,000 records. If you use the batchsize option, then 1 api call per
batchsize

There are other miscellaneous calls DBAmp makes to fetch schema data.
These api calls are in addition to the above guidelines.

25

Chapter 3: Making Local Copies of Salesforce
Data

One common usage of DBAmp is to make periodic copies of Salesforce.com
data into a local SQL Server database. Using a combination of Microsoft
SQL Server jobs scheduled by the SQL Server Agent and DBAmp, you can
import data from Salesforce.com and make local replicated table copies.

Conceptually, the local replicated tables are all located in a single database
that you create. On a schedule you setup, a job runs that backups the
current local table into a table name ending with _Previous. The job then
drops the previous replicated table, creates a new replicated table of the
same name, and inserts all the rows from the corresponding table of the
linked server.

You can setup retry options if the job is unable to run, perhaps delaying an
hour and retrying again.

By default, DBAmp does not download the values of Base64 fields but
instead sets the value to NULL. This is done for performance reasons. If
you require the actual values, modify the Base64 Fields Maximum Size using
the DBAmp Configuration Program to some value other than 0.

How to run the SF_Replicate proc to make a local copy

Now you are ready to run the stored procedure.

Note: The SF_Replicate stored procedure uses the xp_cmdshell command.
If you are not an SQL Server administrator, you must have the proper
permission to use this command. See the SQL Server documentation under
the topic xp_cmdshell for more information. To quickly test, run the
following sql in Query Analyzer:

Exec master..xp_cmdshell "dir"

To run the SF_Replicate stored procedure and make a local copy, use the
following commands in Query Analyzer:

Use "salesforce backups"

Exec SF_Replicate 'SALESFORCE', 'Account'

where 'SALESFORCE' is the name you gave your linked server in at
installation and Account is the Salesforce.com object to copy.

You can also setup a SQL Server job to run SF_Replicate on the schedule
needed.

26

1. Go to the jobs subtree in Enterprise Manager and right click to
create a new job.

2. Create a job with one job step with the following:

EXEC SF_Replicate 'SALESFORCE' , 'Account'

where SALESFORCE is the name of your linked server and Account
is the name of the object. Be sure to set the database to the
database you created earlier. Under the Advanced tab, setup the
retry options. Also check the Append output to job history
option.

27

3. Modify the job schedule for your execution schedule. You can also
execute the job now by right-clicking the newly created job and
choosing Start Job.

Viewing the job history

The output from the DBAmp stored procedures can be long and is often
truncated in the normal job history. For this reason, you should modify the
job step to retain the job output in a table or file.

To retain the entire step output, edit the job step and navigate to the
Advanced tab. Check “Route to table” to have SQL Server retain the entire
message output in a table.

To view the output, return to the Advanced tab and click View.

Replicating all Salesforce Objects

You can use the SF_ReplicateAll stored procedure to replicate all of your
Salesforce objects (including custom objects). When run, the
SF_ReplicateAll proc compiles a list of all existing salesforce objects and
calls the SF_Replicate stored procedure for each object.

Salesforce objects that cannot be queried via the salesforce api wit h no
where clause (like ActivityHistory) will NOT be included. In addition, Chatter
Feed objects are also skipped by the sf_replicateall/sf_refreshall stored
procedures because of the excessive api calls required to download those
objects. You can modify the stored procedures to include the Feed objects
if needed.

Note: SF_Replicate assumes that there are no foreign keys defined on the
current set of local tables. If you have used the SF_CreateKeys stored
procedure to define keys, you must drop those keys with the SF_DropKeys
stored procedure prior to running SF_Replicate or SF_ReplicateAll. Later,
you can recreate the keys using SF_CreateKeys. See the chapter entitled
Creating Database Diagrams and Keys for more information.

How to run the SF_ReplicateAll proc to replicate all objects

Now you are ready to run the stored procedure.

To run the SF_ReplicateAll stored procedure and make a local copy, use the
following commands in Query Analyzer:

Use "salesforce backups"

Exec SF_ReplicateAll 'SALESFORCE'

where 'SALESFORCE' is the name you gave your linked server in at
installation.

28

You can also create a job to run the SF_ReplicateAll procedure on a periodic
basis.

Copying only the rows that have changed

Once you have created an initial set of local, replicated tables, you can
keep those tables up-to-date by using the SF_Refresh and SF_RefreshAll
stored procedures. The SF_Refresh stored procedure attempts to 'sync' the
local table with the Salesforce.com object without having to download the
entire data for the object.

For more information, see the SF_Refresh and SF_RefreshAll stored
procedure reference in the chapter entitled DBAmp Stored Procedure
Reference.

Replicating Large Tables

Tables with large row counts (> 1 million) may require special handling
with DBAmp. DBAmp has several methods to download the rows using
different salesforce api’s.

For most large tables using the salesforce bulkapi along with the
pkchunking option is the most successful method. To use the pkchunk
option, use the following syntax:

Exec SF_Replicate 'SALESFORCE', 'Account','pkchunk'

The normal batch size for pkchunk is 100,000 rows per batch. You can alter
this with the following syntax:

Exec SF_Replicate 'SALESFORCE', 'Account','pkchunk,batchsize(50000)'

Here is a recommended order of options to try when replicating large
tables:

1. SF_Replicate with no options. This command will use the
salesforce web services api.

2. SF_Replicate with the pkchunk option. This command will use the
salesforce bulkapi and the PKChunking header. The initial batch size
will be 100K but you may need to reduce that to as low as 25,000 to
get a successful result and avoid timeouts.

3. SF_ReplicateLarge. If both #1 and #2 fail, then try the
SF_ReplicateLarge stored proc. The SF_ReplicateLarge proc uses
the salesforce bulkapi and a local batching technique to bring down
the rows. Again, try reducing the batch size if timeout errors occur.

Including Archived and Deleted rows in the local copy

To include archived and deleted rows, use sf_replicateIAD and
sf_refreshIAD. Note that these stored procedures can only retrieve

29

deleted rows that are in the recycle bin. Rows that have been permanently
deleted are not available with the salesforce.com api.

SF_ReplicateIAD will retain the permanently deleted rows from run to run.
Once you begin to use SF_ReplicateIAD for a table, DO NOT USE
sf_replicate on that table. If you run sf_replicate instead of sf_replicateIAD,
you will lose all the permanently deleted rows in the local table.

Best Practices for Replicate and Refresh schedules

Most customers will run sf_replicate at night and use sf_refresh during the
day.

If the schema of an object on salesforce is changing daily and the table is
under 25,000 records, then use the 'Yes' option of sf_refresh on runs made
during the day to force DBAmp to replicate the table and pick up the
schema changes.

If the schema of an object on salesforce is changing daily and the table is
greater than 25,000 records, then use the 'Subset' option of sf_refresh on
runs made during the day. With this option, you can avoid time consuming
replicates of large tables during the day while still keeping a subset of the
columns up-to-date. A sf_replicate run that night will pick up the schema
changes and the new data.

Our recommendation is to run sf_replicate either nightly or weekly. In the
salesforce api, changes in formula fields will NOT be flagged as changed
records. Therefore if you have formula fields on objects and only their value
changes, the record will not be picked up by sf_refresh. This is because the
salesforce api does not update the last modified date of that record for a
formula field change. We therefore recommend that you run a sf_replicate
on a nightly or weekly basis for your tables in order to pickup these
modifications.

Large binary blobs may not be downloaded if their size is greater than
MaxBase64Size in the DBAmp registry. See MaxBase64Size in the DBAmp
Registry Settings chapter.

30

Chapter 4: Bulk Insert, Upsert, Delete and
Update into Salesforce

Normal SQL Insert, Delete and Update statements are processed one at a
time and are not sent in batches to Salesforce.com. To perform bulk
operations use the SF_BulkOps stored procedure.

Conceptually, the SF_BulkOps proc takes as input a local SQL Server table
you create that is designated as the "input" table. The input table name
must begin with a valid Salesforce object name followed by an underscore
and suffix. For example, Account_Load and Account_FromWeb are
valid input table names. XXX_Load is not a valid input table name (XXX is
not a valid Salesforce.com object).

Do not allow other applications to write to the input table while
sf_bulkops is running.

Checking the Column Names of the Input Table

The input table must contain a column named Id defined as nchar(18) and
a column named Error defined as nvarchar(255). In addition, the input
table can contain other columns that match the fields of the Salesforce
object.

For example, below is a valid definition of an Account_Load table:

Id nchar(18)

Name nvarchar(80)

Error nvarchar(255)

Note that in this example, the Account_Load table does not contain most of
the fields of the Account object.

How the input table is used depends on the operation requested. When
using the above example table with an Insert operation, the missing fields
are loaded as null values. When using the above example table with an
Update operation, the Name field becomes the only field updated on the
Salesforce side. When using the above example table with a Delete
operation, the Name field is ignored and the objects with the Id value are
deleted.

The SF_BulkOps proc looks at each field of the Salesforce object and tries
to match it to a column name in the input table. One easy way to create a
input table is to copy the definition of a table replicated by the
SF_Replicate proc and add an Error column. Note that columns of the
input table that do not match a field name are ignored. In addition,
columns that match a computed fields (like SystemModstamp) are ignored
if they exist in the input table.

31

The SF_BulkOps proc will identify column names of the input table that do
not match with valid Salesforce.com column names and produce a warning
message in the output. Note that in a properly constructed input table you
may also have other columns in the input table that are for your own use
and that should be ignored as input to SF_BulkOps. The SF_ColCompare
stored procedure will also compare column names and identify errors
without having to run SF_BulkOps.

You can easily have DBAmp generate a valid local table for any
salesforce.com object by using the SF_Generate stored procedure.
SF_Generate will automatically create an empty local table with all the
proper columns of the salesforce.com object needed for that operation. See
the chapter DBAmp Stored Procedure Reference for more information on
SF_Generate and SF_ColCompare.

Using External Ids as Foreign Keys (without bulkapi switch)

You can use external ID fields as a foreign key, allowing you to bulk create,
update, or upsert records in a single step instead of querying a record to
get the ID first.

Note: This feature is not currently available when using the
BulkAPI switch.

To do this, specify the external ID field name along with a colon and the
external ID value. For example, let’s look at bulk insert of contact records
with the following table:

ID LastName AccountId Error

 Emerson 0016000000G8lSsAAJ

 Harrison SAPXID__c:C01202

In the first contact to be created (‘Emerson’), the relationship to the
Account is specified using a traditional 18 char id of the actual account.

The second contact to be created uses an external id field on the Account
object (SAPXID__c) and tells DBAmp/Salesforce to lookup the needed
salesforce.com AccountId by searching for an account where SAPXID__c is
equal to C01202.

Note that the column name (‘AccountId’) does not change; we simply prefix
the value with the external id field name and a colon.

You can use external ids as foreign keys when bulk inserting, updating, or
upserting.

32

Using External Ids as Foreign Keys (with bulkapi switch)

You can use external ID fields as a foreign key, allowing you to bulk create,
update, or upsert records in a single step instead of querying a record to
get the ID first.

To do this, modify the column name of the input table and add a period
followed by the external ID field name. For example, let’s look at bulk
insert of contact records with the following table:

ID LastName AccountId.SAPXID__c Error

 Emerson C01203

 Harrison C01202

In the first contact to be created (‘Emerson’), the relationship to the
Account is specified using the SAP Id of C01203.

Note that when using the bulkapi switch, you do not prefix the
value with a field name. Instead, you add the external id name to
the column name of the table.

Also, you must use the external id value for all rows of the input table.

You can use external ids as foreign keys when bulk inserting, updating, or
upserting.

Understanding the Error Column

For all rows that were successfully processed, sf_bulkops writes the phrase
'Operation Successful" to the Error column. Successfully processed rows
can therefore be selected using the following SQL Select:

Select * from Account_Load where Error like '%Operation Successful%'

Rows that were not successfully processed will contain either a row specific
error or nothing if there was a global failure.

Additional values appear in the Error column when using the BulkAPI
switch. See Error Handling when using the Bulk API later in this
chapter for details.

Bulk Inserting rows into Salesforce

When the operation requested is Insert, the SF_BulkOps reads each row
of the input table, matches the columns to the fields of the Salesforce
object, and attempts to insert the new object into Salesforce. Important:
SF_BulkOps attempts to insert all rows of the load table regardless of any
existing values in the Id and Error columns. In other words, the Id and
Error columns are ignored on input when doing an Insert operation.

33

After execution of the SF_BulkOps proc, the Id column of the input table
is overwritten with the Id assigned by Salesforce for each successfully
inserted row. If the row could not be inserted, the Error column contains
the error message for the failure.

Note: See the section Using the Bulk API with SF_BulkOps for important
differences in Error column handling when using the BulkAPI switch.

Bulk Upserting rows into Salesforce

When the operation requested is Upsert, the SF_BulkOps reads each row
of the input table, matches the columns to the fields of the Salesforce
object, and attempts to upsert the new object into Salesforce. You must
specify which field to use as the External Id field in the SF_BulkOps call.
Important: SF_BulkOps attempts to upsert all rows of the load table
regardless of any existing values in the Id and Error columns. In other
words, the Id and Error columns are ignored on input when doing an
Upsert operation.

After execution of the SF_BulkOps proc, the Id column of the input table
is overwritten with the Id assigned by Salesforce for each successfully
upserted row. If the row could not be upserted, the Error column contains
the error message for the failure.

Note: See the section Using the Bulk API with SF_BulkOps for important
differences in Error column handling when using the BulkAPI switch.

Bulk Updating rows into Salesforce

When the operation requested is Update, the SF_BulkOps reads each row
of the input table, maps the columns to the fields of the Salesforce object,
and attempts to update an object in Salesforce using the Id column of the
input table.

Important: the input table should only contain columns for those fields
that you want to update. . If the data in a column is an empty string or
NULL, sf_bulkops will update that field on salesforce.com to be NULL . You
may modify this behavior by using the following value for the operation:
Update:IgnoreNulls . The IgnoreNulls option tells sf_bulkops to ignore
null values in columns. However, empty string values will still set the field
on salesforce.com to NULL.

For each row in the input table that failed to update, the Erro r column will
contain the error message for the failure.

Note: See the section Using the Bulk API with SF_BulkOps for important
differences in Error column handling when using the BulkAPI switch.

34

Bulk Deleting rows from Salesforce

When the operation requested is Delete, the SF_BulkOps reads each row
of the input table and uses the Id field to delete an object in Salesforce.

For each row in the input table that failed to delete, the Error column will
contain the error message for the failure.

Note: See the section Using the Bulk API with SF_BulkOps for important
differences in Error column handling when using the BulkAPI switch.

Bulk UnDeleting rows from Salesforce

When the operation requested is UnDelete, the SF_BulkOps reads each
row of the input table and uses the Id field to undelete an object in
Salesforce.

You can identify deleted rows in a table with the following query:

Select Id from SALESFORCE…Account_QueryAll where IsDeleted= 'true'

Controlling the batch size

SF_BulkOps uses the maximum allowed batch size of 200 rows. You may
need to reduce the batch size to accommodate APEX code on the
salesforce.com server. To specify a different batch size, use the
batchsize(xx) option after the operation.

For example, to set the batch size to 50:

Exec SF_Bulkops 'Update:batchsize(50)','Salesforce','User_Upd'

If you are also using the IgnoreNulls option, then separate the options with
a comma:

Exec sf_bulkops 'Update:IgnoreNulls,batchsize(50)','Salesforce','User_Upd'

How to run the SF_BulkOps proc

Now you are ready to run the stored procedure.

Note: The SF_BulkOps stored procedure uses the xp_cmdshell command. If
you are not an SQL Server administrator, you must have the proper
permission to use this command. See the SQL Server documentation under
the topic xp_cmdshell for more information. To quickly test, run the
following sql in Query Analyzer:

Exec master..xp_cmdshell "dir"

To run the SF_BulkOps stored procedure, use the following commands in
Query Analyzer. Be sure your default database is salesforce backups.

35

Exec SF_BulkOps 'Insert', 'SALESFORCE', 'Account_Load'

Or

Exec SF_BulkOps 'Upsert','SALESFORCE','Account_Load', 'ED__c'
(where ED__c is the name of the external id field)

Exec SF_BulkOps 'Delete', 'SALESFORCE', 'Account_Load'

Or

Exec SF_BulkOps 'Update', 'SALESFORCE', 'Account_Load'

Exec SF_BulkOps 'UnDelete', 'SALESFORCE', 'Account_Load'

where 'SALESFORCE' is the name you gave your linked server in at
installation and Account_Load is the name of the input table to use.

Similar to the SF_Replicate proc, you can schedule the SF_BulkOps proc
using the SQL Server job agent.

36

How to run the SF_BulkOps proc without using xp_cmdshell

In some SQL Server environments, the use of xp_cmdshell may be
restricted. In this case you can use a CmdExec feature of the SQL job step
to run the underlying bulkops program directly (i.e. instead of using the
sf_bulkops stored procedure). The name of the exe is DBAmp.exe and it is
located in the DBAmp Program Files directory. Normally the directory is
c:\Program Files\DBAmp but DBAmp may installed in a different location.

The DBAmp.exe program takes the following 7 parameters:

1. Operation: Must be either Insert, Delete, Update or Upsert.
This is similar to the first parameter of sf_bulksops. Batchsize and
other options are handled the same way as the sf_bulkops proc.

2. Input Table: The name of the local SQL table containing the data.

3. SQL Server Name: The name of the SQL instance to connect to.

4. SQL Database Name: The name of the database to connect to.
Enclose in double quotes if the name contains a blank.

5. Link Server Name: The name of the DBAmp link server.

6. External Id Colum (Optional): The name of the external Id
column to use when the operation is Upsert. Do not include this
parameter for other operations.

Here is an example of a complete command:

"C:\Program Files\DBAmp\DBAmp.exe" Update Account_Load BUDDY
"salesforce backup" SALESFORCE

Note that even though the command appears on multiple lines in this
document, the command must be entered as a single line in the job step.
Also notice the use of double quotes around both the program and the
database. This is required because those values contain blanks.

When setting up a job step to call the program directly, you must change
the Type of the job step to: Operating System (CmdExec). Then enter
your complete command in the Command text box. Again, the command
must be on a single line.

The DBAmp.exe program returns 0 for a successful completion and -1 if any
rows failed. Ensure that the Process exit code of a successful
command is 0 (zero). A -1 will be returned for situations where some of
the rows succeeded and some failed. Use the error column of the table to
determine the failed rows. Rows that succeeded do not need to be
resubmitted.

37

Below is a screen shot of a sample job step calling the DBAmp.exe.

Your command may be different depending on the install directory.

Understanding SF_Bulkops failures (Web Services API)

Note: See the section Using the Bulk API with SF_BulkOps for important
differences in failure handling when using the BulkAPI switch.

When individual rows of the input table fail to complete the operation,
sf_bulkops writes the error message back to the Error column of that row
and continues processing the next row. Thus, in a batch of 200 rows it is
possible that 175 rows were successful and 25 rows failed.

The sf_bulkops stored procedure outputs an error message in the log
indicating the sf_bulkops failed when 1 or more rows failed. The correct
interpretation of this error message is that at least 1 row of the inpu t table
contained an error. Rows that have a blank error message were still
successful. In addition, sf_bulkops outputs messages indicating the total
number of rows processed the number of rows that failed and the number
of rows that succeeded.

If sf_bulkops is run in a job step, then the job step will fail if one or more
rows contain an error. Again, the rows that contain a blank error message
were still successful; the failure is thrown to indicate to the operator that at
least one row failed.

38

Using the Bulk API with SF_BulkOps

There are two different API's available from salesforce.com that
applications can use to push data : the Web Services API or the Bulk API.
You can use either API with SF_BulkOps with the Web Services API being
the default.

The Web Services API is synchronous, meaning that for every 200 rows that
are sent to salesforce, an immediate response is sent indicating the success
or failure of those 200 rows. SF_BulkOps has traditionally used the Web
Services API. The disadvantage of this API is that the maximum number of
rows that can be sent to salesforce at a time is 200. So if the input table to
SF_BulkOps contains 1000 rows, there will be at least 5 API calls to send
the data to the salesforce.com server.

The Bulk API is asynchronous, meaning that rows sent to salesforce.com
are queued as a job. The job is executed at some time in the future. The
application must enquire about the status of the job at a later time to
retrieve the success or failure of the rows sent. The advantage of the Bulk
API is that up to 10,000 rows can be sent in a single request or API call. An
input table of 5000 rows would require a single API call to send the data,
along with API calls to retrieve the status at some point in the future.

By default, SF_BulkOps uses the Web Services API. To use the Bulk API,
add the BulkAPI switch to the operation parameter of the SF_BulkOps call:

Exec SF_BulkOps 'Insert:bulkapi', 'SALESFORCE', 'Account_Load'

Because the Bulk API is asynchronous, the error column is popula ted with a
tracking token indicating the job and batch id for that row along with the
current status. For example, the following Error value indicates that this
row has been submitted to salesforce.com but the result is currently
unknown:

BulkAPI:Insert:750600000004DbhAAE:751600000004FJaAAM:1:Submitted

After the job completes on salesforce, SF_BulkOps populates the Error
column with the success or failure of the operation on that row. For
successfully processed rows, then the Error is changed to indicate a
successful operation:

BulkAPI:Insert:750600000004DbhAAE:751600000004FJaAAM:2:Operation
Successful.

You can use this to remove successfully processed rows from the table:

Delete Account_Load where Error like '%Operation Successful%'

Any rows remaining either have not been processed yet or have failed to process.
The error message associated with the failure is written to the Error value:

39

BulkAPI:Insert:750600000004DbhAAE:751600000004FJaAAM:2:Error:
INVALID CROSS REFERENCE ID

DBAmp will poll salesforce every 1 minute until the job completes on
salesforce. Then the final success or error message will be written to the
Error column.

If you prefer not to have DBAmp poll for the status (i.e “fire and forget”)
then add the phrase (ns) after the bulkapi option: Insert:bulkapi(ns)

Putting this all together, the workflow for using SF_BulkOps with the Bulk
API is:

1. Call SF_Bulkops to submit a job to salesforce to process the data
and wait for the job to complete. This command will not return until
the job completes on salesforce.com. It will poll salesforce every 1
minute to determine if the job has completed.

Exec SF_BulkOps 'Insert:bulkapi', 'SALESFORCE','Account_Load'

2. Remove the successful records from the table with the following
command:

Delete Account_Load

where Error like '%Operation Successful%'

Examine the remaining rows in the table and determine the failure using

Controlling the batch size with the Bulk API

The maximum allowed batch size when using the Bulk API is 10,000 rows.
By default, the Bulk API uses a batch size of 5000 rows. You may need to
reduce the batch size to accommodate APEX code on the salesforce.com
server. To specify a different batch size, use the batchsize(xx) option after
the operation.

For example, to set the batch size to 2500:

Exec SF_Bulkops 'Update:bulkapi,batchsize(2500)','Salesforce','User_Upd'

Understanding a Sort Column when using the Bulk API

For maximum performance when using the bulkapi option, the load table
should have also have a Sort column. Here is a quick way you can add a
Sort column to your load table. Assume that the load table is named
Account_upd1:

Alter table Account_upd1

Add [Sort] int identity (1,1)

This adds a Sort column to the table that is a consecutive integer number.
Having this column will dramatically improve the run time for large
(>50,000 rows) operations.

40

In addition, the sort column can be used to reduce locking issues on
salesforce. Salesforce recommends ordering a detail load table by the
master record id to improve locking (See
https://developer.salesforce.com/page/Loading_Large_Data_Sets_with_the_
Force.com_Bulk_API).

Suppose you are uploading Contact records using a load table named
Contact_upd1. In this case, you could create a Sort column as an nchar(18)
field:

Alter table Contact_upd1

Add [Sort] nchar(18) null

Then populate the Sort column with the value of the AccountId field:

Update Contact_upd1 Set Sort = AccountId

SF_Bulkops will send the records to salesforce in AccountId order to reduce
locking when inserting the contacts.

Using the HardDelete operation with the Bulk API

When using the Bulk API, there is an additional operation available called
HardDelete. With the HardDelete operation, the deleted records are not
stored in the Recycle Bin. Instead, they become immediately available for
deletion. The administrative permission for this operation, Bulk API Hard
Delete, is disabled by default and must be enabled by an administrator. A
Salesforce user license is required for hard delete.

Exec SF_Bulkops 'HardDelete:bulkapi','Salesforce','Account_Delete'

Controlling Concurrency Mode with the Bulk API

By default, the Bulk API uses a concurrency mode of Serial. This guarantees
that batches are processed one at a time.

You can request processing in parallel using the parallel option but this
option may cause locking issues on the salesforce.com server . When this is
severe, the job may fail. If you're experiencing this issue, submit the job
with serial concurrency mode.

To use parallel concurrency mode (instead of the default serial mode):

Exec SF_Bulkops 'Update:bulkapi,parallel','Salesforce','User_Upd'

Using Optional SOAP Headers

The salesforce api allow you to pass additional SOAP Headers that alter the
behavior of the sf_bulkops operation. The SOAP Headers are described in

https://developer.salesforce.com/page/Loading_Large_Data_Sets_with_the_Force.com_Bulk_API
https://developer.salesforce.com/page/Loading_Large_Data_Sets_with_the_Force.com_Bulk_API

41

detail in the salesforce.com api documentation:
http://www.salesforce.com/us/developer/docs/api/Content/soap_headers.htm

The headers are specified in the form of 3 values separated by commas.
The first value is the header name, the next value is the section name and
the last value is the value for the section. The entire parameter is enclosed
in quotes. The salesforce.com api is case sensitive with respect to these
values; use the exact token given in the salesforce.com documentation.

For example, to use the default assignment rule for these inserted Leads
you would add the following SOAP Header parameter:

exec sf_bulkops 'Insert','SALESFORCE','Lead_Test','AssignmentRuleHeader,useDefaultRule,true'

The DBAmp Registry settings can also be used to add SOAP headers. The
difference is the SOAP header parameter on the sf_bulkops call is a “one-
time” use. The DBAmp Registry settings apply the SOAP header to all
operations of DBAmp. Therefore, using the SOAP header parameter allows a
finer control over the header usage.

Here are some other examples of SOAP headers:
Trigger auto-response rules for leads and cases: 'EmailHeader,triggerAutoResponseEmail,true'
Changes made are not tracked in feeds: 'DisableFeedTrackingHeader,disableFeedTracking,true'

Note: SOAP Headers cannot be used with the bulkapi switch of sf_bulkops.

Converting Leads with SF_Bulkops

SF_BulkOps can be used to convert lead records to
accounts/contacts/opportunities.

The first step is to create a table to hold the information needed for the
conversion. At minimum the table needs to have the following columns:

CREATE TABLE [dbo].[LeadConvert](

 [LeadId] [nchar](18) NULL,

 [convertedStatus] [nvarchar](255) NULL,

 [Error] [nvarchar](512) NULL,

 [AccountId] [nchar](18) NULL,

 [OpportunityId] [nchar](18) NULL,

 [ContactId] [nchar](18) NULL

) ON [PRIMARY]

Additional columns listed below may be added to the table if the
functionality of the column is needed.

Name Type Description

accountId nchar(18)
NULL

ID of the Account into which the lead will be
merged. Required only when updating an existing

http://www.salesforce.com/us/developer/docs/api/Content/soap_headers.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_objects_account.htm#topic-title

42

Name Type Description

account, including person accounts. If no

accountID column is specified, then the API

creates a new account.

DBAmp will populate this column with the ID of the
newly created Account.

contactId nchar(18)
NULL

ID of the Contact into which the lead will be merged
(this contact must be associated with the specified
accountId, and an accountId must be specified).
Required only when updating an existing contact.
Important

If you are converting a lead into a person account,
do not specify the contactId or an error will result.
Specify only the accountId of the person account.

If no contactID is specified, then the API

creates a new contact that is implicitly associated
with the Account.

DBAmp will populate this column with the ID of the
newly created Contact.

convertedStatus nvarchar(255)
NULL

Valid LeadStatus value for a converted lead.
Required. To obtain the list of possible values, you
must query the LeadStatus object. For example:

Select Id, MasterLabel

from SALESFORCE...LeadStatus where

IsConverted=true

doNotCreateOpportunity varchar(5)

NULL

Specifies whether to create an Opportunity during

lead conversion (false, the default) or not

(true). Set this flag to true only if you do not

want to create an opportunity from the lead. An
opportunity is created by default.

leadId nchar(18)
NULL

ID of the Lead to convert. Required.

opportunityId nchar(18)

NULL

DBAmp populates the field with the Id of the newly
created Opportunity

opportunityName nvarchar(80)

NULL

Name of the opportunity to create. If this column is
not included, then this value defaults to the
company name of the lead.

overwriteLeadSource varchar(5)

NULL

Specifies whether to overwrite the LeadSource field
on the target Contact object with the contents of the

LeadSource field in the source Lead object (true),

or not (false, the default). To set this field to

true, you must specify a contactId for the target

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_objects_contact.htm#topic-title
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_guidelines_personaccounts.htm#topic-title
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_objects_account.htm#topic-title
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_objects_opportunity.htm#topic-title
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_objects_lead.htm#topic-title
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_objects_contact.htm#topic-title
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_objects_lead.htm#topic-title

43

Name Type Description

contact.

ownerId nchar(18)

NULL

Specifies the ID of the person to own any newly
created account, contact, and opportunity. If the
client application does not specify this value, then
the owner of the new object will be the owner of the
lead.

sendNotificationEmail varchar(5)

NULL

Specifies whether to send a notification email to the

owner specified in the ownerId (true) or not

(false, the default).

Use the following command to convert leads:

Exec SF_BulkOps 'ConvertLead', 'SALESFORCE', 'LeadConvert'

Be sure to examine the error column after running the command to look for
possible errors that may have occurred.

44

Chapter 5: Using SSIS with DBAmp

DBAmp can be used with SSIS to build complex integrations. Within SSIS,
you can use DBAmp in two ways:

- Directly connecting to DBAmp to pull data from salesforce.com

- Connecting to SQL Server and using the link server to push data to
salesforce.com.

Create a Connection for DBAmp

In order to use DBAmp in any integration project , you must first create a
new OLE DB Connection that uses the DBAmp provider .

1. Right click in the Connection Managers panel and choose New
OLE DB Connection. When the Configure OLE DB Connection
Manager dialog, click the New button.

2. The Connection Manager dialog is displayed. Enter the following
information:

Provider: DBAmp OLE DB Provider
Location: Leave blank to connect to production org. For sandbox
orgs use https://test.salesforce.com
User name: Your salesforce.com user id
Password: Your salesforce.com password. Include the security
token if needed.
Allow saving password: Check this box.

Click the Test Connection button and correct any errors as needed.

3. Click OK to save the new connection. The new connection should
now appear in the Connection Managers panel.

4. Optionally, right click on the newly created connection and rename
to a friendlier name.

Using DBAmp as an OLE DB Source

SSIS can connect directly to DBAmp to pull data from salesforce.com. Use
the following steps to create a Data Flow task in SSIS that reads data from
salesforce.com using DBAmp:

1. While in the Control Flow panel, drag and drop a Data Flow Task
from the Toolbox. Right click on the new Data Flow Task and choose
Edit. The Data Flow panel should now be displayed

https://test.salesforce.com/

45

2. From the Toolbox, drag and drop the OLE DB Source item onto the
edit panel. Right click the new OLE DB Source item and choose
Properties.

3. Set the AlwaysUseDefaultCodePage property to TRUE. This must
be done for the DBAmp OLE DB Source to work correctly.

4. Now, right click on the OLE DB Source item and choose Edit. Set
the OLE DB Connection Manager to the DBAmp connection
created above.

5. Data Access Mode can be either a Table or View or a SQL
command.

When using a SQL command, remember that DBAmp is expecting
SOQL (not SQL). Do not use the Build Query button.

Instead, type your SOQL statement directly into the SQL
Command Text field.

A full description of the SOQL language can be found on the
salesforce.com website at :

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTop
ic=Content/sforce_api_calls_soql.htm

This OLE DB Source can now be used as the source of the data flow.

Pushing Data to Salesforce.com using SSIS

The most scalable way to push data to salesforce.com is the sf_bulkops
stored procedure. The SF_Bulkops stored procedure is described in detail in
the chapter titled Bulk Insert, Upsert, Delete and Update into
Salesforce.

In SSIS, you can use the Execute SQL Task to call the SF_Bulkops stored
procedure. The connection manager for the task should be a connection to
the SQL Server (NOT the DBAmp OLE DB provider). The SQL Source Type
should be Direct Input and the SQL Statement should be the call to the
SF_BulkOps stored procedure.

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql.htm
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql.htm

46

The Execute SQL Task that contains the SF_BulkOps call normally has 2
precedence constraints: 1 for SUCCESS and 1 for FAIL.

47

You can use the Precedence Constraints to direct flow based on the
SF_BulkOps outcome. SF_Bulkops (and therefore the Execute SQL Task)
fails if any row of the table cannot be processed successfully. If only a
partial number of rows succeed, the FAIL precedence constraint fires. When
this occurs, you can identify the successful rows by using the following
SQL:

Select * from Account_SSISUpdate
where Error like '%Operation Successful%'

48

Chapter 6: Uploading files into Content,
Documents and Attachments

You can use DBAmp to upload files into salesforce.com as Content,
Documents or Attachments with the SF_Bulkops stored procedure. When
you place a file path in the VersionData or Body column, SF_Bulkops will
use the path to obtain the data needed.

SALESFORCE guidelines for uploading documents in ContentVersion object:

“To create a document, create a new version via the ContentVersion object
without setting the ContentDocumentId. This automatically creates a parent
document record. When adding a new version of the document, you must
specify an existing ContentDocumentId which initiates the revision process
for the document. When the latest version is published, the title, owner,
and publish status fields are updated in the document. ”

To upload Content, use the following steps:

1. Use the SF_Generate stored procedure to generate a table to be
used for the upload. See SF_Generate in the Stored Procedure
reference for more details on SF_Generate.

exec sf_generate 'Insert','SALESFORCE','ContentVersion_Load'

2. Using SQL, modify the VersionData column type to be a
nvarchar(500) instead of an image type.

Alter table ContentVersion_Load Drop Column VersionData

Alter table ContentVersion_Load Add VersionData nvarchar(500) null

3. Insert rows into ContentVersion_Load with the following values:

 Title - file name.

 ContentDocumentId – ID of the document.

 Origin -The source of the content version. Valid values are:

o C—This is a Content document from the user's
personal library. Label is Content. The
FirstPublishLocationId must be the user's ID. If
FirstPublishLocationId is left blank, it defaults to the
user's ID.

o H—This is a Chatter file from the user's My Files.
Label is Chatter. The FirstPublishLocationId must be
the user's ID. If FirstPublishLocationId is left blank, it
defaults to the user's ID. Origin can only be set to H
if Chatter is enabled for your organization.

49

This field defaults to C. Label is Content Origin.

 OwnerId - ID of the owner of this document.

 Description - (optional) file or link description.

 VersionData - complete file path on the local drive of the
computer where DBAmp is installed. For example:
c:\serialnumber.txt

 PathOnClient - complete file path on the local drive of the
computer where DBAmp is installed.

 ContentUrl - URL (for uploading links only, leave blank for
files).

 FirstPublishLocationId - workspace ID.

 RecordTypeId - content type ID. If you publish to a
workspace that has restricted content types, you must
specify RecordTypeId.

4. Upload the table to salesforce.com with SF_Bulkops. SF_Bulkops will
automatically read the file using the location found in the
VersionData column and pass the contents to salesforce as the file.

Note: You cannot use the bulkapi switch when uploading content
with sf_bulkops.

exec sf_bulkops 'Insert','SALESFORCE','ContentVersion_Load'

5. Check the Error column of ContentVersion_Load table for any error
messages that may have occurred during the upload.

To upload Attachments, use the following steps:

1. Use the SF_Generate stored procedure to generate a table to be
used for the upload. See SF_Generate in the Stored Procedure
reference for more details on SF_Generate.

exec sf_generate 'Insert','SALESFORCE','Attachment_Load'

2. Using SQL, modify the Body column type to be a nvarchar(500)
instead of an image type.

Alter table Attachment_Load Drop Column Body

 Alter table Attachment_Load Add Body nvarchar(500) null

3. Insert rows into Attachment_Load with the following values:

 Name - file name.

 Description - (optional) file description.

50

 Body- complete file path on the local drive of the computer
where DBAmp is installed. For example: c:\serialnumber.txt

 IsPrivate - false/true

 OwnerId - (optional) file owner, defaults to the user
uploading the file.

 ParentId – ID of the parent object of the attachment. The
following objects are supported as parents of attachments:

Account, Asset, Campaign, Case, Contact, Contract, Custom
objects, EmailMessage, EmailTemplate, Event, Lead,
Opportunity, Product2, Solution, Task.

51

4. Upload the table to salesforce.com with SF_Bulkops. SF_Bulkops will
automatically read the file using the location found in the Body
column and pass the contents to salesforce as the file.

Note: You cannot use the bulkapi switch when uploading
attachments with sf_bulkops.

exec sf_bulkops 'Insert','SALESFORCE','Attachment_Load'

5. Check the Error column of Attachment_Load table for any error
messages that may have occurred during the upload.

52

Chapter 7: Creating Database Diagrams and Keys

Using DBAmp and a database diagramming tool, you can construct
Database Diagrams of Salesforce.com tables like the example below.
DBAmp works with all major ERD and database diagramming tools.

53

Creating a Primary Key

Do not use SF_CreateKeys if all you want is a permanent Primary Key on
the ID field of the tables. Instead, the SF_Replicate stored procedure will
automatically create the primary key on the ID field of every table it
replicates.

Creating Foreign Keys

The table can have many foreign keys. The foreign keys created by
SF_CreateKeys are disabled and will not be enforced by SQL Server. This
is because salesforce.com allows a field of a table to reference multiple
other tables. For example, the field ParentId on the Attachment table can
refer to Id field of six or more other tables. It would not be possible for
SQL Server to enable this as a foreign key.

Creating a Database Diagram

Creating database diagrams is a 4 step process:

1. Replicate the needed tables using SF_Replicate. This creates a
local table with a primary key.

2. Use the DBAmp stored procedure SF_CreateKeys to add the
foreign keys to the local replicated tables.

3. Use the ERD tool of choice (like SQL Enterprise Manager's Data
Diagrams) to build a diagram from the tables and keys.

4. Drop the foreign keys using the stored procedure SF_DropKeys.
Failure to remove the foreign keys from the table causes problems
with the later replication of the table.

There are two DBAmp stored procedures for key creation and deletion.
They are SF_DropKeys, which drops all foreign keys on the local tables in
the database and SF_CreateKeys, which creates the foreign key
constraints on the same tables. These procedures work only on the local
tables that appear to be replicated copies of Salesforce.com tables

Note that SF_CreateKeys will only create foreign keys for existing local
tables; the procedure does not create the local table itself. Therefore, you
must replicate down either all the salesforce.com tables (using
SF_ReplicateAll) or a subset of salesforce.com tables (using
SF_Replicate) prior to running SF_CreateKeys.

In addition, the foreign keys should not exist when running SF_Replicate or
SF_ReplicateAll. Therefore, we recommend that you only use
SF_CreateKeys and SF_DropKeys when you need to build a
database diagram. The procedure to build the diagram is:

1. Create the database to hold the local replicated tables.

2. Run SF_ReplicateAll to make a complete local set of replicated
tables.

54

3. Run SF_CreateKeys to add the foreign keys to the local tables.

4. Create the database diagrams as needed using the ERD tool of your
choice or SQL Management Studio.

5. Run SF_DropKeys to drop the foreign keys.

55

Chapter 8: Using Excel with Views to Linked
Server Tables

When accessing the linked server from Excel or other programs, you are
really accessing SQL server and then using SQL Server to access the linked
tables. To avoid four part object names in this scenario, use the following
scripts to create views of the linked server tables.

Create Views of the SALESFORCE linked server tables

The SF_CreateViews procedure is a stored proc that can be run every night
and it will automatically create views for those that don't exist and
drop/recreate the views that do exist.

To use this stored procedure in Query Analyzer:

1. Create a new SQL Server database to contain the view definitions.
Name this new database SFViews . Navigate to or create a
database that will contain the views.

Open the 'Create Views.sql' file located in the DBAmp installation directory.
Ensure that you are using the proper database (check the QA Toolbar),
then press F5 to add the SF_CreateViews stored procedure to the database.

2. As often as needed, run the following to create the views:

exec SF_CreateViews 'SALESFORCE'

where 'SALESFORCE' is the name of your linked server. The stored
procedure will create view definitions in the new database for each
of the salesforce.com objects. The view name will be the object
name with _View appended (Account_View).

56

Using Excel

With the views created, you can now easily import data into Excel
spreadsheets and pivot tables. Here’s how to do it:

1. To import data to a spreadsheet, choose New Database Query…
from the Data – Import External Data menu.

To import data to a pivot table, choose Pivot Table and Pivot
Chart Report from the menu and click External Data on the
dialog. Then click the Get Data button.

57

2. If you have already created a data source for Salesforce.com, skip
to step 6. If not, check Use the Query Wizard, choose <New
Data Source> and click OK.

3. Name the new data source, select the SQL Server driver and click
Connect.

58

4. Enter the required connection information for your SQL Server. Click
the Options button and select the SFViews database (the database
created earlier in the chapter).

5. Do not select a default table. Click OK.

59

6. Select the data source you created in the previous steps and click
OK.

7. When the Query Wizard – Choose Columns dialog appears, click
Cancel. Click Yes on the next dialog to continue editing the query
in Microsoft Query.

60

8. Finally, use Microsoft Query to build a query from the
Salesforce.com views by dragging and dropping columns from the
views. Consult the Microsoft Query help for information on how to
join tables. Also, review the information on joining Salesforce.com
tables in Chapter 2.

61

Chapter 9: DBAmp Stored Procedure Reference

62

SF_BulkOps

Usage

SF_BulkOps takes as input a local SQL Server table you create that is
designated as the "input" table. The input table name must begin with a
valid Salesforce object name followed by an underscore and suffix. For
example, Account_Load and Account_FromWeb are valid input table
names. XXX_Load is not a valid input table name (XXX is not a valid
Salesforce.com object).

The input table must contain a column named Id defined as nchar(18) and
a column named Error defined as nvarchar(255). In addition, the input
table can contain other columns that match the fields of the Sales force
object. SF_BulkOps produces warning messages for all columns that do not
match a field in the salesforce.com object. Non-matching columns are not
considered an error because you may want to have column data in the table
for reference but that should be intentionally ignored.

Do not allow other applications to write to the input table while
sf_bulkops is running.

NOTE: There are two different API's available from salesforce.com that
applications can use to push data : the Web Services API or the Bulk API.
You can use either API with SF_BulkOps with the Web Services API being
the default.

The Web Services API is synchronous, meaning that for every 200 rows that
are sent to salesforce, an immediate response is sent indicating the success
or failure of those 200 rows. SF_BulkOps has traditionally used the Web
Services API. The disadvantage of this API is that the maximum number of
rows that can be sent to salesforce at a time is 200. So if the input table to
SF_BulkOps contains 1000 rows, there will be at least 5 API calls to send
the data to the salesforce.com server.

The Bulk API is asynchronous, meaning that rows sent to salesforce.com
are queued as a job. The job is executed at some time in the future. The
advantage of the Bulk API is that up to 10,000 rows can be sent in a single
request or API call. An input table of 5000 rows would require a single API
call to send the data, along with API calls to retrieve the status at some
point in the future.

By default, SF_BulkOps uses the Web Services API.

The SF_Generate stored procedure can be used to quickly build input
tables for SF_BulkOps.

The SF_ColCompare stored procedure can be used to compare ‘hand built’
tables against the salesforce.com object to ensure correct column names.

SF_BulkOps can perform one of twelve operations:

63

1. Insert – When the operation requested is Insert, the SF_BulkOps
reads each row of the input table, matches the columns to the fields
of the Salesforce object, and attempts to insert the new object into
Salesforce. Important: SF_BulkOps attempts to insert all rows of
the load table regardless of any existing values in the Id and Error
columns.

2. Insert:BulkAPI – Insert rows from the table using the Bulk API
instead of the Web Services API.

3. Upsert - When the operation requested is Upsert, the
SF_BulkOps reads each row of the input table, matches the
columns to the fields of the Salesforce object, and attempts to
upsert the new object into Salesforce using the specified external id
field. Important: SF_BulkOps attempts to upsert all rows of the
load table regardless of any existing values in the Id and Error
columns.

4. Upsert:BulkAPI – Upsert row using the Bulk API instead of the
Web Services API.

5. Update – When the operation requested is Update, the
SF_BulkOps reads each row of the input table, maps the columns
to the fields of the Salesforce object, and attempts to update an
object in Salesforce using the Id column of the input table.

Important: the input table should only contain columns for those
fields that you want to update. If the data in a column is an empty
string or NULL, sf_bulkops will update that field on salesforce.com
to be NULL. You may modify this behavior by using the following
value for the operation: Update:IgnoreNulls . The IgnoreNulls
option tells sf_bulkops to ignore null values in columns. However,
empty string values will still set the field on salesforce.com to NULL.

6. Update:BulkAPI – Update salesforce objects using the Bulk API
instead of the Web Services API.

7. Delete - When the operation requested is Delete, the SF_BulkOps
reads each row of the input table and uses the Id field to delete an
object in Salesforce.

8. Delete:BulkAPI – Delete objects in salesforce using the Bulk API
instead of the Web Services API.

9. HardDelete:BulkAPI – Delete objects in salesforce using the Bulk
API. In addition, the deleted records are not stored in the Recycle
Bin.

10. Status – Populate the Error column with the current job/batch
status. This is used when using BulkAPI operations to determine
the result of the operation.

11. ConvertLead – Converts Lead records. See Converting Leads
with SF_BulkOps in Chapter 4 for more details.

64

12. UnDelete – Use this option to undelete rows from the Recycle bin.
You can identify deleted rows using a query against the _QueryAll
table:

Select Id from SALESFORCE…Account_QueryAll
 where IsDeleted='True'

For each row in the input table that the operation fails , the Error column
will contain the error message for the failure.

Syntax

exec SF_BulkOps 'Insert','linked_server','object','OptionalSoapHdr'

Or

exec SF_BulkOps 'Delete','linked_server','object','OptionalSoapHdr'

Or

exec SF_BulkOps 'Update:BulkAPI','linked_server','object','OptionalSoapHdr'

or

exec SF_BulkOps 'Upsert','linked_server','object','eid', ,'OptionalSoapHdr'

where linked_server is the name of your linked server , object is the name
of the object, and eid is the name of the external id field.

The OptionalSoapHdr parameter is optional and may be used to pass
salesforce.com SOAP headers for this execution only. See Using Optional
SOAP Headers later in this section.

Example

The following example bulk inserts rows from the local table named
Account_Load into the Account object at Salesforce.com using the
SALESFORCE linked server.

exec sf_bulkops 'Insert','SALESFORCE','Account_Load'

Controlling the batch size

SF_BulkOps uses a batch size of 200 rows (Web Services API) or 5,000
(Bulk API). You may need to reduce the batch size to accommodate APEX
code on the salesforce.com server. To specify a different batch size, use
the batchsize(xx) option after the operation.

For example, to set the batch size to 50:

Exec SF_Bulkops 'Update:batchsize(50)','Salesforce','User_Upd'

If you are also using the IgnoreNulls option, then separate the options with
a comma:

65

Exec sf_bulkops 'Update:IgnoreNulls,batchsize(50)','Salesforce','User_Upd'

Controlling the Concurrency Mode

If you are using the bulkapi switch, the default concurrency mode is Serial.
To specify parallel concurrency mode instead, use the parallel option:

Exec SF_Bulkops 'Update:bulkapi,parallel,'Salesforce','User_Upd'

Skipping the Status check

If you prefer not to have DBAmp poll for the status (i.e “fire and forget ”)
then add the phrase (ns) after the bulkapi option: 'Insert:bulkapi(ns) '

Using Optional SOAP Headers

The salesforce api allow you to pass additional SOAP Headers that alter the
behavior of the sf_bulkops operation. The SOAP Headers are described in
detail in the salesforce.com api documentation:
http://www.salesforce.com/us/developer/docs/api/Content/soap_headers.htm

The headers are specified in the form of 3 values separated by commas.
The first value is the header name, the next value is the section name and
the last value is the value for the section. The entire parameter is enclosed
in quotes. The salesforce.com api is case sensitive with respect to these
values; use the exact token given in the salesforce.com documentation.

For example, to use the default assignment rule for these inserted Leads
you would add the following SOAP Header parameter:

exec sf_bulkops 'Insert','SALESFORCE','Lead_Test','AssignmentRuleHeader,useDefaultRule,true'

The DBAmp Registry settings can also be used to add SOAP headers. The
difference is the SOAP header parameter on the sf_bulkops call is a “one-
time” use. The DBAmp Registry settings apply the SOAP header to all
operations of DBAmp. Therefore, using the SOAP header parameter allows a
finer control over the header usage.

Here are some other examples of SOAP headers:

Trigger auto-response rules for leads and cases: 'EmailHeader,triggerAutoResponseEmail,true'

Changes made are not tracked in feeds: 'DisableFeedTrackingHeader,disableFeedTracking,true'

SOAP Headers cannot be used along with the bulkapi switch.

Notes

A full explanation of the SF_BulkOps stored procedure can be found in
Chapter 4: Bulk Insert, Upsert, Delete and Update into Salesforce.

When individual rows of the input table fail to complete the operation,
sf_bulkops writes the error message back to the Error column of that row

http://www.salesforce.com/us/developer/docs/api/Content/soap_headers.htm

66

and continues processing the next row. Thus, in a batch of 200 rows it is
possible that 175 rows were successful and 25 rows failed.

The sf_bulkops stored procedure outputs an error message in the log
indicating the sf_bulkops failed when 1 or more rows failed. The correct
interpretation of this error message is that at least 1 row of the input table
contained an error. In addition, sf_bulkops outputs messages indicating the
total number of rows processed the number of rows that failed and the
number of rows that succeeded.

For all rows that were successfully processed, sf_bulkops writes the phrase
'Operation Successful" to the Error column. Successfully processed rows
can therefore be selected using the following SQL Select:

Select * from Account_Load where Error like '%Operation Successful%'

This technique works for the bulkapi switch as well.

If sf_bulkops is run in a job step, then the job step will fail if one or more
rows contain an error. Again, the rows that contain a blank error message
were still successful; the failure is thrown to indicate to the operator that at
least one row failed.

67

SF_ColCompare

Usage

SF_ColCompare compares the column structure of a local input table you
create to the column structure of a Salesforce.com object. The input table name
must begin with a valid Salesforce object name followed by an underscore and
suffix. For example, Account_Load and Account_FromWeb are valid input
table names. XXX_Load is not a valid input table name (XXX is not a valid
Salesforce.com object).

SF_ColCompare requires you to specify an operation of either
‘Insert’,’Update’,’Upsert’, or ‘Delete’. The local table is checked to make sure
that all columns are valid for that operation.

SF_ColCompare is used to verify that the column names of your input table
match the column names of the Salesforce.com object. That confirms that the
input table will be successfully used by a later SF_BulkOps job.

The output of SF_ColCompare is a single result table containing any errors.

One error that SF_ColCompare detects is column names in the local table that
do not exist in the Salesforce.com object. Column names that appear should be
checked for misspellings or other errors. Note: it is possible to have columns in
the input table that are intended to be ignored by the SF_BulkOps job (for
reference or other purposes). These column names will appear as errors even
though they are ignored when used with SF_BulkOps.

Another error that is detected by SF_ColCompare is column names that exist
in salesforce.com object but are not applicable to the operation. For example,
CreatedDate is a valid column but cannot be inserted or updated and will be
flagged by SF_ColCompare as an error. Note: if these columns remain in the
local table, SF_BulkOps will simply ignore them.

Syntax

exec SF_ColCompare ‘op’,'linked_server', 'local_table'

where op is either ‘Insert’,’Update’,’Upsert’ or ‘Delete’, linked_server is the
name of your linked server and local_table is the name of the local input
table.

Example

The following example compares the local table named Account_Load to the
Account object at Salesforce.com using the SALESFORCE linked server for
inserting:

exec sf_colcompare 'Insert','SALESFORCE','Account_Load'

68

SF_CreateKeys

Usage

SF_CreateKeys creates foreign keys for all local replicated tables of a
database. This is useful for creating database diagrams and proving ad-hoc
query tools with join hints.

You should run SF_DropKeys to ensure that all previous foreign keys are
removed before recreating them with SF_CreateKeys.

For more information on SF_CreateKeys, see the chapter entitled Creating
Database Diagrams and Keys .

Syntax

exec SF_CreateKeys 'linked_server'

where linked_server is the name of your linked server.

Example

The following example creates foreign keys for all local, replicated tables in
the database using the SALESFORCE linked server.

exec sf_createkeys 'SALESFORCE'

Notes

SF_CreateKeys will only create foreign keys for existing local tables; the
procedure does not create the local table itself. Therefore, you must
replicate down either all the salesforce.com tables (using SF_ReplicateAll)
or a subset of salesforce.com tables (using SF_Replicate) prior to running
SF_CreateKeys.

69

SF_DropKeys

Usage

SF_DropKeys drops all foreign keys for all local replicated tables of a
database. You should run SF_DropKeys to ensure that all previous
foreign keys are removed before recreating them with SF_CreateKeys.

For more information on SF_DropKeys, see the chapter entitled Creating
Database Diagrams and Keys .

Syntax

exec SF_DropKeys 'linked_server'

where linked_server is the name of your linked server.

Example

The following example drops all foreign keys for all local, replicated tables
in the database using the SALESFORCE linked server.

exec sf_dropkeys 'SALESFORCE'

Notes

 SF_DropKeys should be run before SF_Replicate or
SF_Replicate since these procedures assume that no foreign
keys exist on the current local tables. We recommend that
you only use SF_CreateKeys and SF_DropKeys when you
need to database diagram.

 To create a permanent primary key on the ID field, do not
use SF_CreateKeys. Instead, SF_Replicate will automatically
create the primary key on the Id field.

 SF_DropKeys will drop the keys on all tables in the
salesforce backups database. Do not use SF_DropKeys if you
have created your own, non-salesforce tables with keys in
the database.

70

SF_Generate

Usage

SF_Generate generates a empty local table that can be used as input of
SF_BulkOps for the operation specified. All columns of the salesforce.com
obect that are valid for the operation are included in the table. The input table
name must begin with a valid Salesforce object name followed by an underscore
and suffix. For example, Account_Load and Account_FromWeb are valid
input table names. XXX_Load is not a valid input table name (XXX is not a
valid Salesforce.com object).

SF_Generate requires you to specify an operation of either
‘Insert’,’Update’,’Upsert’, or ‘Delete’. The local table generate will have all
columns that are valid for that operation.

The output of SF_ColCompare is a single empty table and the Create Table
SQL used to create it.

Syntax

exec SF_Generate ‘op’,'linked_server', 'local_table'

where op is either ‘Insert’,’Update’,’Upsert’ or ‘Delete’, linked_server is the
name of your linked server and local_table is the name of the local input
table.

Example

The following example creates the local table named Account_Load for the
Account object at Salesforce.com using the SALESFORCE linked server.

exec sf_generate 'Insert','SALESFORCE','Account_Load'

71

SF_Refresh

Usage

SF_Refresh compares the current, local replicated table with the contents
of the same object at Salesforce.com. Any changes (insert, deletes or
updates) are detected and the local table is updated. Use the SF_Refresh
stored procedure when you need to 'synch' your local copy with
Salesforce.com.

SF_Refresh can only be used on objects in salesforce that contain the
necessary timestamp columns for tracking changes.

Syntax

exec sf_refresh 'LS,'object','SchemaError','verify','bulkapi’

where LS is the name of your linked server and object is the name of the
object.

The optional parameter SchemaError should be set to ‘Yes’ if you want
sf_refresh to automatically call sf_replicate if there is a schema change to
the salesforce object.

The optional parameter SchemaError can also be set to ‘Subset’. If
there is a schema change to the salesforce object, sf_refresh will try to
determine a valid subset of columns that exist in both the local table and
the table on salesforce.com and will refresh the local table based on that
column subset. 'Subset' implies that new fields added to the salesforce
object will not be captured by the sf_refresh. In addition, deleted fields will
still remain in the local table. To alter the local table and immediately
delete columns no longer in the salesforce object, set SchemaError to
'SubsetDelete'. To match the schemas back up, either run sf_replicate or
sf_refresh with SchemaError of 'Yes'.

SchemaError can also be set to ‘Repair’. With the ‘Repair’ option,
sf_refresh alters the method used for incrementally updating the local
table. Specifically, the Max(SystemModstamp) of the local table is used to
set the start time of the interval (as opposed to the last time sf_refresh
ran). In addition, deleted records are determined by comparing a list of the
Id’s locally with a list of Id’s from the salesforce.com table (as opposed to
using the GetDeleted function).

Note: the 'Subset' and 'SubsetDelete' options are not available for SQL
2000.

If SchemaError is not provided than sf_refresh prints an error message and
throw an error if the two schemas do not match.

72

The optional parameter verify can be set to 'no’ , 'warn' or 'fail'.
The default value is 'no'. If the verify parameter is set to warn or fail, the
sf_refresh proc compares the row count of the local table with the row
count of the table on salesforce and reports any difference. If the
parameter is set to 'fail' the sf_refresh proc will fail.

The optional parameter bulkAPI allows sf_refresh to use the bulkAPI
instead of the salesforce web services API. This option should only be used
if you are having problems with the sf_refresh. Using the bulk API will
always be slower but may be the only way to get the rows down from
salesforce.com. Normally, this option should not be specified. To use
the bulkAPI, set this option to 'bulkapi' :

exec sf_refresh 'SALESFORCE','Account','Yes','no','bulkapi'

Example

The following example refreshes the local Account table with the current
data on Salesforce.com using the SALESFORCE linked server.

exec sf_refresh 'SALESFORCE' , 'Account'

Notes

The table must contain a SystemModstamp column in order to be
refreshed. An initial local copy of the table must exist and be less than 30
days old. If the table does not exist, use the sf_replicate procedure to
make a local copy before refreshing the table.

73

SF_RefreshIAD

Usage

SF_RefreshIAD compares the current, local replicated table with the
contents of the same object at Salesforce.com. Any inserted or updated
rows are detected and the local table is updated. Use the SF_RefreshIAD
stored procedure when you need to 'synch' your local copy (created with
SF_ReplicateIAD) with Salesforce.com.

SF_RefreshIAD adds to the local table all deleted rows that are current ly
in the recycle bin. This is an important difference between SF_RefreshIAD
and SF_Refresh. SF_RefreshIAD uses the QueryAll api call.

SF_RefreshIAD can only be used on objects in salesforce that contain the
necessary timestamp columns for tracking changes.

Syntax

exec SF_RefreshIAD 'linked_server','object_name','SchemaError'

where linked_server is the name of your linked server and object_name is
the name of the object.

The optional parameter SchemaError should be set to ‘Yes’ if you want
SF_RefreshIAD to automatically call sf_replicateIAD if there is a schema
change to the salesforce object.

If SchemaError is not provided than SF_RefreshIAD prints an error
message and throw an error if the two schemas do not match.

Example

The following example refreshes the local Account table with the current
data on Salesforce.com using the SALESFORCE linked server.

exec SF_RefreshIAD 'SALESFORCE' , 'Account'

Notes

The table must contain a SystemModstamp column in order to be
refreshed. An initial local copy of the table must exist and be less than 30
days old. If the table does not exist, use the sf_replicateIAD procedure
to make a local copy before refreshing the table.

74

SF_RefreshAll

Usage

SF_RefreshAll retrieves a list of the current objects from salesforce and
compares the current, local replicated table with the contents of the same
object at Salesforce.com. Any changes (insert, deletes or updates) are
detected and the local table is updated. Use the SF_RefreshAll stored
procedure when you need to 'synch' a ll your local tables with
Salesforce.com.

SF_RefreshAll does not refresh all the tables created by SF_Replicateall
because some of the objects in salesforce cannot be refreshed. These
objects do not contain a timestamp field that tracks the datetime of the last
modification. In addition, Chatter Feed objects are also skipped by the
sf_replicateall/sf_refreshall stored procedures because of the excessive api
calls required to download those objects. You can modify the stored
procedures to include the Feed objects if needed.

Syntax

exec sf_refreshall 'linked_server','SchemaError','verify'

where linked_server is the name of your linked server.

The optional parameter SchemaError should be set to ‘Yes’ if you want
sf_refreshall to automatically call sf_replicate if there is a schema change
to the salesforce object. SchemaError of 'Yes' will also cause DBAmp to
replicate those tables that are not refreshable.

If SchemaError is not provided than sf_refreshall prints an error message
and throw an error if the two schemas do not match.

The optional parameter verify can be set to 'no’ , 'warn' or 'fail'.
The default value is 'no'. If the verify parameter is set to warn or fail, the
sf_refresh proc compares the row count of the local table with the row
count of the table on salesforce and reports any difference. If the
parameter is set to 'fail' the sf_refresh proc will fail.

 Example

The following example refreshes all the local tables with the current data
on Salesforce.com using the SALESFORCE linked server.

exec sf_refreshall 'SALESFORCE'

Notes

75

The tables must contain a SystemModstamp column in order to be
refreshed. An initial local copy of the table must exist and be less than 30
days old. If the tables do not exist, use the sf_replicateall procedure to
make a local set of tables before refreshing the tables.

Tables that do not contain a SystemModstamp column are ignored unless
the SchemaError parameter is ‘Yes’. These are typically the Salesforce.com
tables that end with Status (like CaseStatus) .

The SF_RefreshAll stored procedure calls the SF_Refresh procedure for
each valid local table.

There are some tables, like Vote and UserProfileFeed, in Salesforce that are
not included in sf_refreshall. The salesforce.com API does not allow
selecting all rows from these tables. In addition, Chatter Feed objects are
also skipped by the sf_replicateall/sf_refreshall stored procedures because
of the excessive api calls required to download those objects. You can
modify the stored procedures to include the Feed objects i f needed.

76

SF_Replicate

Usage

SF_Replicate creates a local replicated table with the contents of the
same object at Salesforce.com. The name of the local table is the same
name as the Salesforce.com object (i.e. Account). Any schema changes in
the object at Salesforce.com are reflected in the new table.

In addition, SF_Replicate creates a primary key on the Id field of the table.

Syntax

exec sf_replicate 'linked_server','object_name','options'

where linked_server is the name of your linked server and object_name is
the name of the object. There are several optional options you may include
as well.

Example

The following example replicates the local Account table with the current
data on Salesforce.com using the SALESFORCE linked server.

exec sf_replicate 'SALESFORCE' , 'Account'

Options

Batchsize: SF_Replicate uses the maximum allowed batch size of 2000
rows. You may need to reduce the batch size to accommodate APEX code
on the salesforce.com server. To specify a different batch size, use the
batchsize(xx) option after the operation.

For example, to set the batch size to 50:

Exec SF_Replicate 'Salesforce','Account','batchsize(50)'

pkchunk: SF_Replicate uses the salesforce.com web services api by
default. If you would like to use the salesforce.com bulkapi with the
pkchunking header instead, add the optional pkchunk switch. SF_Replicate
will submit a bulkapi job using the pkchunking header and poll every minute
for completion. This option should only be used for large tables.

For example, to use the pkchunk and poll every 1 minutes for completion:

Exec SF_Replicate 'Salesforce','Account','pkchunk'

The default batch size will be 100,000. You can alter this using the
batchsize parameter:

77

Exec SF_Replicate 'Salesforce','Account','pkchunk,batchsize(50000)'

Bulkapi: SF_Replicate uses the salesforce.com web services api by default.
If you would like to use the salesforce.com bulkapi instead, add the
optional bulkapi switch. SF_Replicate will submit a bulkapi job and poll
every minute for completion. The bulkapi should only be used for large
tables.

For example, to use the bulkapi and poll every 1 minutes for completion:

Exec SF_Replicate 'Salesforce','Account','bulkapi'

Notes

The SF_Replicate stored procedure creates a full copy and downloads all
the data for that object from Salesforce. If you only want to download the
any changes made since you created the local copy, use the SF_Refresh
stored procedure instead.

A primary index on the Id column will be automatically created when the
table itself is replicated.

By default, DBAmp does not download the values of Base64 fields but
instead sets the value to NULL. This is done for performance reasons. If
you require the actual values, modify the Base64 Fields Maximum Size using
the DBAmp Configuration Program to some value other than 0.

78

SF_ReplicateHistory

Usage

SF_ReplicateHistory is an alternate to SF_Replicate that can only be
used for History tables. Occasionally, the salesforce server is unable to
process a Select * from History table without timing out.
SF_ReplicateHistory can sometimes be used to replicate the history table by
structuring the SOQL query differently.

Syntax

exec sf_replicatehistory 'linked_server','object_name'

where linked_server is the name of your linked server and object_name is
the name of a history object.

Example

The following example replicates the local Account table with the current
data on Salesforce.com using the SALESFORCE linked server.

exec sf_replicatehistory 'SALESFORCE' , 'AccountHistory'

79

SF_ReplicateAll

Usage

SF_ReplicateAll creates a full backup of your Salesforce.com data as local
replicated tables with the contents of the same object at Salesforce.com.
Any schema changes in the object at Salesforce.com are reflected in the
new table.

Salesforce objects that cannot be queried via the salesforce api with no
where clause (like ActivityHistory) will NOT be included. In addition, Chatter
Feed objects are also skipped by the sf_replicateall/sf_refreshall stored
procedures because of the excessive api calls required to download those
objects. You can modify the stored procedures to include the Feed objects
if needed.

Syntax

exec sf_replicateall 'linked_server'

where linked_server is the name of your linked server.

Example

The following example replicates all the current data on Salesforce.com
using the SALESFORCE linked server.

exec sf_replicateall 'SALESFORCE'

Notes

The SF_ReplicateAll stored procedure calls the SF_Replicate procedure
for each Salesforce.com object.

There are some tables, like Vote and UserProfileFeed, in Salesforce that are
not included in sf_ReplicateAll. The salesforce.com API does not allow
selecting all rows from these tables. In addition, Chatter Feed objects are
also skipped by the sf_replicateall/sf_refreshall stored procedures because
of the excessive api calls required to download those objects. You can
modify the stored procedures to include the Feed objects if needed.

By default, DBAmp does not download the values of Base64 fields but
instead sets the value to NULL. This is done for per formance reasons. If
you require the actual values, modify the Base64 Fields Maximum Size using
the DBAmp Configuration Program to some value other than 0.

80

81

SF_ReplicateIAD

Usage

SF_ReplicateIAD creates a local replicated table with the contents of the
same object at Salesforce.com, including any archived or deleted records
from the recycle bin. The name of the local table is the same name as the
Salesforce.com object (i.e. Account). Any schema changes in the object at
Salesforce.com are reflected in the new table.

Syntax

exec sf_replicateIAD 'linked_server','object_name'

where linked_server is the name of your linked server and Account is the
name of the object.

Example

The following example replicates the local Account table with the current
data on Salesforce.com using the SALESFORCE linked server. Any archived
or deleted records will be included in the local table

exec sf_replicateIAD 'SALESFORCE' , 'Account'

Notes

The SF_ReplicateIAD stored procedure creates a full copy and downloads
all the data for that object from Salesforce.

 Do not try to SF_Refresh tables create with SF_ReplicateIAD. Instead
you can use SF_RefreshIAD.

SF_ReplicateIAD only retrieves the deleted records that are currently in
the salesforce recycle bin.

SF_ReplicateIAD will retain the permanently deleted rows from run to run.
Once you begin to use SF_ReplicateIAD for a table, DO NOT USE
sf_replicate on that table. If you run sf_replicate instead of sf_replicateIAD,
you will lose all the permanently deleted rows in the loca l table.

82

SF_ReplicateLarge

Usage

SF_ReplicateLarge should only be used as a last resort when
SF_Replicate fails due to the number of rows in the table.

This stored procedure cannot be used by Professional Edition
customers due to the lack of access to the salesforce Bulk API.

SF_ReplicateLarge creates a local replicated table with the contents of
the same object at Salesforce.com using the salesforce bulkapi. The name
of the local table is the same name as the Salesforce.com object (i.e.
Account). Any schema changes in the object at Salesforce.com are reflected
in the new table. In addition, SF_ReplicateLarge creates a primary key
on the Id field of the table.

SF_ReplicateLarge always uses the bulkapi. In addition, it uses a
partitioning strategy based on the Id column to pull rows in multiple
chunks. Salesforce does not allow binary fields to be queried using the
bulkapi. Therefore, SF_ReplicateLarge cannot be used on tables with
binary columns.

SF_ReplicateLarge requires that the sf user used by the linked server be
an salesforce administrator or have the “View All Data” privledge.

SF_ReplicateLarge will almost also take hours to run for tables with many
million rows.

Syntax

exec sf_replicatelarge 'linked_server','object_name'

where linked_server is the name of your linked server and object_name is
the name of the object.

Controlling the batch size

SF_ReplicateLarge uses a batch size of 250,000 .. You may need to reduce
the batch size to accommodate Query Timeouts on the salesforce.com
server. To specify a different batch size, specify a third parameter with the
desired batch size.

For example, to set the batch size to 100000:

exec sf_replicatelarge 'SALESFORCE' , 'Account', 100000

 Example

83

The following example replicates the local Account table with the current
data on Salesforce.com using the SALESFORCE linked server.

exec sf_replicatelarge 'SALESFORCE' , 'Account'

84

Chapter 10: DBAmp Registry Settings

DBAmp registry settings are found under Registry Settings menu choice of
the DBAmp Configuration Program.

Metadata Override

This entry allows you to modify the Scale of a decimal field or the length of a string

field. In some cases, salesforce.com returns data with a greater scale then the
reported metadata allows.

For example, in the RevenueForecast table, the scale of the COMMIT column is 0.

But salesforce returns data for this column using a scale of 2. To alter DBAmp to
use 2 as the scale, set the MetadataOverride field to the following value:

Revenueforecast:Commit(2)

Another example is the Field column in the FieldPermissions table. Use this to make

the column larger so that the field names are not truncated:

FieldPermissions:Field(100)

If you need to alter multiple fields, separate the entries with a semicolon.

Base64 Maximum Field Size:

This entry modifies how DBAmp handles large binary fields when
downloading from Salesforce (like the Body field of Attachments). If the
field has a value greater in length then MaxBase64Size, DBAmp will not
attempt to download the binary contents and instead set the value to NULL.

A value of 0 causes DBAmp to set all Base64 fields to NULL. This is the
initial setting for performance reasons.

Be sure to restart SQL Server after changing this setting.

Receive Timeout

This entry is the number of seconds DBAmp waits for a response from the
salesforce server.

If you are receiving “Operation timed out” error messages, increase this
value. For some organizations you may to set this as high as 3000 (i.e. 50
minutes).

85

BulkAPI Polling Interval

This entry is the number of seconds DBAmp waits between querying for
bulkapi job completion.

BulkAPI Status Timeout

This entry is the number of seconds DBAmp waits for a bulkapi job to
complete. SF_Replicate with the bulkapi option ignores this value and
always uses a tmeout of 12 hours.

Use ConvertCurrency Function

This entry controls whether DBAmp uses the ConvertCurrency function
when retrieving currency amounts from salesforce. A checked value forces
DBAmp to use the ConvertCurrency function. See chapter 2 of this manual
for more details. This setting does not apply to OpenQuery selects.

Be sure to restart SQL Server after changing this setting.

Use ToLabel Function

This entry controls whether DBAmp uses the ToLabel function when
retrieving picklists from salesforce. A checked value forces DBAmp to use
the ToLabel function. See chapter 2 of this manual for more details. This
setting does not apply to OpenQuery selects.

Be sure to restart SQL Server after changing this setting.

TriggerAutoResponseEmail, TriggerOtherEmail, TriggerUserEmail

These entries control whether DBAmp adds an EmailHeader to all requests
made to salesforce.com. A checked value forces DBAmp to include the
header.

Note: Setting this registry switch forces DBAmp to add the header to all
DBAmp operations. If you need finer control then use the optional SOAP
header of the SF_BulkOps stored procedure.

These EmailHeaders control the following:

 triggerAutoResponseEmail Indicates whether to trigger auto-response

rules (checked) or not (not checked),

for leads and cases. In the Salesforce user

interface, this email can be automatically

triggered by a number of events, for

example resetting a user password.

86

 triggerOtherEmail Indicates whether to trigger email outside

the organization (checked) or not (not

checked). In the Salesforce user interface,

this email can be automatically triggered by

creating, editing, or deleting a contact for a

case.

 triggerUserEmail Indicates whether to trigger email that is

sent to users in the organization

(checked) or not (not checked). In the

Salesforce user interface, this email can be

automatically triggered by a number of

events; resetting a password, creating a

new user, adding comments to a case, or

creating or modifying a task.

UseDefaultAssignment

This entry controls whether DBAmp adds an AssignmentHeader to all
requests made to salesforce.com. A checked value forces DBAmp to include
the header.

Note: Setting this registry switch forces DBAmp to add the header to all
DBAmp operations. If you need finer control then use the optional SOAP
header of the SF_BulkOps stored procedure.

87

Chapter 11: Retrieving Salesforce Metadata
DBAmp can retrieve Salesforce metadata information using the Salesforce
metadata api. The SF_Metadata stored procedure implements this
functionality.

A couple of items to note when using this functionality:

1. Due to the nature of Salesforce metadata information, the metadata
is returned to an XML type column in Salesforce. Knowledge of the
XML column type and the use of XQuery expressions in SQL Sele ct
statements is required to produce results.

2. The SF_Metadata stored procedure implements the List and
Retrieve functions of the Salesforce Metadata API. These functions
require specific type and member inputs as defined in the Salesforce
Metadata API Developer’s Guide found at
http://www.salesforce.com/us/developer/docs/api_meta/index.htm .

Successfully using SF_Metadata is not possible without a review of
the Metadata API Guide and an understanding of metadata types.

How to run the SF_Metadata proc

The SF_Metadata stored proc can be executed in a query window or job
step.

Note: The SF_Metadata stored procedure uses the xp_cmdshell command.
If you are not an SQL Server administrator, you must have the proper
permission to use this command. See the SQL Server documentation under
the topic xp_cmdshell for more information. To quickly test, run the
following sql in Query Analyzer:

Exec master..xp_cmdshell "dir"

To run the SF_Metadata stored procedure, use the following command:

Exec SF_Metadata 'List', 'SALESFORCE', 'MD_Input'

Or

Exec SF_Metadata 'Retrieve', 'SALESFORCE', 'MD_Input'

where 'SALESFORCE' is the name you gave your linked server in at
installation and MD_Input is the name of the input table to use.

Using the LIST and RETRIEVE operations

The SF_Metadata stored procedure takes as input an operation of either
List or Retrieve.

http://www.salesforce.com/us/developer/docs/api_meta/index.htm

88

The Retrive operation is used to retrieve xml representations of
components in an organization. The input table contains rows that your
provide which indicate the components you want to retrieve.

The List operation is used when you want a high-level view of particular
metadata types in your organization. For example, you could use this
operation to return a list of names of all the CustomObject or Layout
components in your organization, and use this information to make a
subsequent SF_Metadata call with the Retrieve operation to return a
subset of these components.

Requirements for the input table

Conceptually, the SF_Metadata proc takes as input a local SQL Server
table you create that is designated as the " input" table. The input table
name must not contain embedded blanks. Though not enforced, a naming
standard for the input table to SF_Metadata should be used. For
example, an input table used to retrieve Settings information could be
called MD_Settings.

The input table must have the following structure:

CREATE TABLE MD_Settings (

 [Name] [nvarchar](255) NULL,

 [Member] [nvarchar](255) NULL,

 [MetadataXML] [xml] NULL,

 [CreatedByWildcard] [bit] NULL,

 [CreatedByList] [bit] NULL,

 [Error] [nvarchar](255) NULL,

 [Id] [nchar](18) NULL

)

89

The purpose of each column is described below:

Name Type Description

Name Nvarchar(255)
NULL

The type of metadata component to be retrieved.
For example, a value of CustomObject will retrieve
one or more custom objects as specified in the
member column

Member Nvarchar(255)
NULL

One or more named components, or the wildcard
character (*) to retrieve all custom metadata
components of the type specified in the <name>
element. To retrieve a standard object, specify it by
name. For example a value of Account will retrieve
the standard Account object.

MetadataXML xml

NULL

The xml describing the component is output to this
colum as a result of the Retrieve operation. The
xml contents are described by compenent in the
salesforce Metadata API documentation.

CreatedByWildcard bit

NULL

Upon input this column should be NULL.

 If an asterisk was used for the Member column
and the operation is Retrieve, then new rows will be
created with a value of TRUE for this column.
When the SF_Metadata procedure is executed
again with operation Retrieve, the rows containing
TRUE will be deleted and repopulated again.

CreatedByList bit

NULL

Upon input this column should be NULL.

 If an asterisk was used for the Member column
and the operation is List, then new rows will be
created with a value of TRUE for this column.
When the SF_Metadata procedure is executed
again with operation List, the rows containing TRUE
will be deleted and repopulated again.

Error Nvarchar(255)

NULL

Upon input this column should be NULL.

The Error column is an output column and is
populated with any error messages that are
returned from the salesforce server.

Id nchar(18)

NULL

Upon input this column should be NULL.

Specifies the ID of the component as returned by
the salesforce server.

90

Example: Retrieve Dependent Picklist Information

This example shows the steps needed to retrieve all dependent Picklist
information for the Lead Object.

1. Create an empty input table:

CREATE TABLE MD_LeadPicklists (

 [Name] [nvarchar](255) NULL,

 [Member] [nvarchar](255) NULL,

 [MetadataXML] [xml] NULL,

 [CreatedByWildcard] [bit] NULL,

 [CreatedByList] [bit] NULL,

 [Error] [nvarchar](255) NULL,

 [Id] [nchar](18) NULL

)

2. Populate the input table. Insert a single row into the table with the
Name column of CustomObject and the Member column of Lead

INSERT INTO MD_LeadPicklists (Name,Member)

Values ('CustomObject', 'Lead')

3. Run the SF_Metadata proc to retrieve the information.

Exec SF_Metadata 'Retrieve', 'Salesforce', 'MD_LeadPicklists'

4. Run the following query against the table to generate the results:

 -- Query to select dependent picklists

;WITH XMLNAMESPACES(DEFAULT 'http://soap.sforce.com/2006/04/metadata')

SELECT Member

 ,fn.c.value('(../../../fullName)[1]','nvarchar(50)') as FieldName

 ,fn.c.value('(../../controllingField)[1]','nvarchar(50)') as

ControllingFieldName

 ,fn.c.value('(../fullName)[1]','nvarchar(50)') as PicklistValue

 ,fn.c.value('(.)[1]','nvarchar(50)') as ControllingPicklistValue

FROM MD_LeadPicklists

cross apply metadataxml.nodes

('/CustomObject/fields/picklist/picklistValues/controllingFieldValues') as fn(c)

91

5. Result:

Member FieldName ControllingFieldNa PicklistValue ControllingPicklistValue

Lead ProductInterest__c Industry GC1000 series Agriculture

Lead ProductInterest__c Industry GC1000 series Apparel

Lead ProductInterest__c Industry GC1000 series Banking

Lead ProductInterest__c Industry GC1000 series Biotechnology

Lead ProductInterest__c Industry GC1000 series Construction

Lead ProductInterest__c Industry GC1000 series Education

Lead ProductInterest__c Industry GC5000 series Biotechnology

Lead ProductInterest__c Industry GC5000 series Chemicals

Lead ProductInterest__c Industry GC5000 series Construction

Lead ProductInterest__c Industry GC5000 series Electronics

Example: Retrieve Field Descriptions

This example shows how to retrieve field description information using the
salesforce metadata api.

Drop Table MD_FieldDesc

go

CREATE TABLE MD_FieldDesc (

[Name] [nvarchar](255) NULL,

[Member] [nvarchar](255) NULL,

[MetadataXML] [xml] NULL,

[CreatedByWildcard] [bit] NULL,

[CreatedByList] [bit] NULL,

[Error] [nvarchar](255) NULL,

[Id] [nchar](18) NULL

)

INSERT INTO MD_FieldDesc (Name,Member) Values ('CustomObject', '*')

-- Get a list of objects with customer fields

Exec SF_Metadata 'List', 'Salesforce', 'MD_FieldDesc'

-- Cleanup wildcard and objects that will error

Delete MD_FieldDesc where Member = '*'

Delete MD_FieldDesc where Member = 'SiteChangeList'

-- Retrieve the field metadata

Exec SF_Metadata 'Retrieve', 'Salesforce', 'MD_FieldDesc'

-- Query to select descriptions

;WITH XMLNAMESPACES(DEFAULT

'http://soap.sforce.com/2006/04/metadata') SELECT Member

,fn.c.value('(fullName)[1]','nvarchar(50)') as FieldName

,fn.c.value('(description)[1]','nvarchar(50)') as Description

--,fn.c.value('(../fullName)[1]','nvarchar(50)') as PicklistValue

,fn.c.value('(.)[1]','nvarchar(50)') as ControllingPicklistValue

FROM MD_FieldDesc

92

cross apply metadataxml.nodes ('/CustomObject/fields') as fn(c)

93

Chapter 12: Using DBAmp Performance Package

The DBAmp Performance package allows you to capture the message output
from the DBAmp stored procedures and summarize the information into
performance metrics.

There are many reasons to use the DBAmp Performance Package (DPP):

 DPP creates a DBAmp_Log table to log all message output from
stored procedure execution, this allows you to locate message
output errors

 DPP creates views to summarize SF_Replicate, SF_Refresh, and
SF_Bulkops

 DPP allows you to view run times, number of rows copied, deleted,
updated, inserted, etc.

 DPP allows you to easily view which tables fa iled

 DPP allows you to connect to an outside analytics tool to visualize
performance (ex: Excel)

Using the DBAmp Performance package you can answer questions like:

 How long does on average does it take to replicate or refresh a
table ?

 What is the average throughput of sf_ bulkops ?

 What is the failure rate of the DBAmp stored procedures?

The DBAmp Performance Package contains two components:

1. The DBAmp_Log table that contains the message output from all
stored procedure execution

2. Performance Views that summarize the DBAmp_Log table into a set
of usable performance metrics.

Installing the DBAmp Performance Package

The first step to install the DBAmp Performance Package is to run a script
to create the needed objects.

If you are currently using DBAmp_Log table, installing the DBAmp
Performance package will delete all data in your current
DBAmp_Log.

94

DBAmp_Log can hold up to 250,000 rows, which is approximately 50 MB of
data storage. Once DBAmp_Log reaches 250,000 rows, it deletes ¼ of
itself.

To install the DBAmp Performance Package:

1. Open the file “Create DBAmp Perf.sql” in Query Analyzer or
Management Studio but do not execute it yet. The file is located in
the \Program Files\DBAmp\SQL directory.

2. Make sure the default database shown on the toolbar is the
salesforce backups database (and not the main database). Then,
execute (F5) to add the script to the database.

3. In order to make sure that the Create DBAmp Performance script
worked properly, perform two actions:

Verifying

Run the statement below to verify that the DBAmp_Log table was
created:

Select * from DBAmp_Log

You should see a table similar to the screenshot below:

• Under Views, in the salesforce backups database under Object
Explorer, check to see that the three performance views were created.
It should look similar to the screenshot provided below:

95

If these are working properly, you are ready to begin using the DBAmp
Performance Package.

Using the DBAmp_Log Table

All DBAmp stored procedures write their output message to the DBAmp_Log
table created by the DBAmp Performance Package. By querying the
DBAmp_Log table, you can view the message output from recently
executed DBAmp stored procedures. This allows you to view information
and find any errors related to each DBAmp stored procedure execution. The
columns in the table are:

Column Name Documentation

SPName Unique ID of each execution

Status Status of the execution

Message All messages related to each execution

LogTime The date and time the execution started

(status = starting) and ended (status =
successful/failed)

96

Run the statement below to select all rows and columns of the DBAmp_Log Table:

 Select * from DBAmp_Log

Using the Performance Views

Why Views?

- The views summarize the raw message output in the DBAmp_Log table
into views that can be analyzed for performance.

- The views can be used to import performance data into Excel or other
analytical tools

There are three performance views included in the DBAmp Performance
Package. The three views and their documentation are listed below:

DBAmp_Replicate_Perf view

The DBAmp_Replicate_Perf view contains the data and metrics of all
SF_Replicate, SF_ReplicateIAD, and SF_Replicate3 executed. The columns
in the view are:

Column Name Documentation

SPName Unique ID of each execution

LogTime The date and time the execution started

(status = starting) and ended (status =
successful/failed)

LinkedServer Name of the DBAmp linked server used

97

Object Name of object

RowsCopied Number of rows copied during each

execution

RunTimeSeconds Number of seconds the execution took to

run

Failed If the execution failed or not (True =

failed)

Run the statement below to select all rows and columns of the
DBAmp_Replicate_Perf:

 Select * from DBAmp_Replicate_Perf

 DBAmp_Refresh_Perf view

The DBAmp_Refresh_Perf view contains the data and metrics of all SF_Refresh and
SF_RefreshIAD executed. The columns in the view are:

Column Name Documentation

SPName Unique ID of each execution

LogTime The date and time the execution started

(status = starting) and ended (status =
successful/failed)

LinkedServer Name of the DBAmp linked server used

Object Name of object

RowsUpdatedOrInserted Number of rows updated/inserted

98

RowsDeleted Number of rows deleted

RunTimeSeconds Number of seconds the execution took to

run

Failed If the execution failed or not (True =

failed)

Run the statement below to select all rows and columns of the
DBAmp_Refresh_Perf:

 Select * from DBAmp_Refresh_Perf

DBAmp_BulkOps_Perf view

The DBAmp_BulkOps_Perf view contains the data and metrics of all SF_BulkOps

executed. The columns in the view are:

Column Name Documentation

SPName Unique ID of each execution

LogTime The date and time the execution started
(status = starting) and ended (status =

successful/failed)

BulkOpsAction The execution action (update, insert,

upsert, delete, etc.)

LinkedServer Name of the DBAmp linked server used

LoadTable Name of the local SQL input table used
containing the data

RowsRead Total number of rows read during each

execution

RowsSuccessful Number of rows successfully read

RowsFailed Number of rows that failed

99

RunTimeSeconds Number of seconds the execution took to
run

Failed If the execution failed or not (True =

failed)

Run the statement below to select all rows and columns of the
DBAmp_BulkOps_Perf:

 Select * from DBAmp_BulkOps_Perf

Using Excel with the Performance Views

To import data from the SQL Performance views into Excel spreadsheets and pivot

tables, visit the Using Excel section in chapter 8: Using Excel with Views to

Linked Server Tables. Below is an example of how you could use the performance
view data for analysis:

The screenshot below is of performance data from the DBAmp_Replicate_Perf view

fed into Excel for analysis purposes:

The graph below is of the performance data shown above. In this example, it is
showing you the time it took for the stored procedures to execute vs. the number of

rows that were copied for each execution. Below is an example of a performance
measure that you can see by using the DBAmp Performance Package:

