forceAMP.com

DBAMp

SQL Serverlntegration with Salesforce.com

Version 3.4.8

Copyright © 2009 by forceAmp.com. All rights reserved.

Table of Contents

ACKNOWIEAGMENTS e et ereeseeeeaes 8
Chapter 1: Installation/Upgrading .o cvvveeeenie s 9
Upgrading an existing installation..........cccccccccvviiiiiiies vvvveeeviiiiiieeeeee 9
Prer@QUISTESoeiiiiiiiee et e e 9
Running the DBAmMp installation file..........c.ccccovviiviiiiiiies v, 10
Configure the DBAMp provider Options........ccccceevviiiiieeeeennns cveeeviinnnen 10
Connecting DBAMPLO SQL SEeIVer.......ccoviiiiiiiiiiiiiiies eeeeiiieee e 10
Verifying the liINked SEIVEr ... e A1
Install the DBAmMp Stored Procedures...........coooevvviiiiciciiiies cvvvvvveeeeeeen, 12
Running the DBAmp Configuration Program..........ccccccevvveeeeeeeees ceveenn. 12
Setting up the DBAMpP WOork Dir€Ctory.......ccoocvveiiiiiiiiiiies ceeviieeeen 13
Pointing DBAmMp to your Salesforce Sandbox Instance.............ccc.vuve... 14
Chapter 2: Using DBAMP as a Linked Server —cccooovevve e, .15
Four Part Object NamesS.........ccoviiiiiiiiiiiiiis e ... 15
SQL VErsuS SOQL....coiiiiiiiiiiiiiiies ettt e 15
Using the four part object name and SQLccooeeiiiiiiiiiciiiies cvveeeeeen, 15
Using OPENQUERY and SOQL......c.ovevieeeeeiees eoveeeeeerereeeeeeeenenen. 16
Inserting rows USING SQL.......cooiiiiiiiiiiiiiiiies e ...18
Updating and Deleting rows using SQL........ccccccvviiiiiiiiiiiiies cvveeeeeeeenn, 19
Joining Salesfore.com Tables..............ccccccciis e, 20
Analyzing Performance when Joining Tables..........cccoviiinis e, 20
Using BIT datatype with DBAMPcocoviiiiiiiiiiiiiiins e 22
Using Dates With DBAMP........uvviiiiiiiiiiiiieieiiies aveveeicecninenrnenrnnenes 22
Using DBAmp System Tables (syssf tables).......ccccoccvviiiiiiiics oo 23
Using Count() with salesforce.com objects..........ccocccviveiviiices vvveenee 24
Using DBAmp to convert currency amounts to a default currency......... 24
Using DBAmp to return translated values for picklists............cocuveeeeen. 25
Retrieving Archived and Deleted records.........ccoovveiniiiiiiiies eevevinenn, 25
Using Column SUDSEL VIEBWS........cccuviiiiiiiiiiiiis v 26
DBAmMp and Salesforce API call CoUNtS.........coooiiiiiiiiiiiiiies v, 27

Chapter 3: Making Local Copies of Salesforce Data ~cccoceeeeenee. 28

How to run the SF_Replicate proc to make a local copy..........ccceeeee... 28
Viewing the Job hiStoryccccccveiiiiiii s e e 30
Replicating all Salesforce ObJeCtS........cccciviiiiiiiiis e, 30
How to run the SF_ReplicateAll proc to replicate all objects................. 30
Copying only the rows that have changedcccccccoiiiiins e, 31
Replicating Large Tables.........coooviiiiiiiiis e 31
Including Archived and Deleted rows in the local copy.............cceeeneee. 31
How to run the SF_Replicate proc without dropping the local table 32
Best Practices for Replicate and Refresh schedules.............cocvvvee.n. 32
Skipping Tables in SF_ReplicateAll and SF_RefreshAll...................... 33
Chapter 4: Bulk Insert, Upsert, Delete and Update into Salesforce 34
Checking the Column Names of the Input Table..........ccccvvvvvveveeennnnn. .34
Using External Ids as Foreign Keys (without bulkapi switch) 35
Using External Ids as Foreign Keys (with bulkapi switch)..................... 36
Understanding the Error ColumN..........vvviiiits e 36
Bulk Inserting rows into Salesforceccoovvvvvveivieiieieces v, 36
Bulk Upserting rows into Salesforce.........ccoocvvieiiniiies evveviieeeiieenn, 37
Bulk Updating rows into Salesforceccovvviiiiiiiiiies eeveviieeeiieenn, 37
Bulk Deleting rows from Salesforce........coovvvveveieiiiiiiiies i, 37
Bulk UnDeleting rows from Salesforce.........cccccoviiiiiiiiccns vvvieeinieenn, 38
Controlling the batch Size ..ot e, ..38
How to run the SF_BUIKOPS PrOC........cuuviiiiiiiiiiiiiiiiiies cveeeeeeeeieieieeeenns 38
How to run the SF_BulkOps proc without using xp_cmdshell............... 40
Understanding SF_Bulkops failures (Web Services API)..........cccc....... 41
Using the Bulk APl with SF_BUIKOPS.........cuuiiiiiiiiiiiiiiiiies cveeeeeeeeieieen, 42
Controlling the batch size with the Bulk APlcoooiiiiiiiiiiiiiies e, 43
Understanding a Sort Column when using the Bulk API...........c........... 43
Using the HardDelete operation with the Bulk APIcccovveeeenns 44
Controlling Concurrency Mode with the Bulk API...........cocoiiiinnins .44
Using Optional SOAP Headers........ccccoeiiiiiiiiiiiins i 44
Converting Leads with SF_BUIKOPS.........cooiviiiiiiiiiiiis e, 45
Using IgnoreFailures Option with SF_BUIKOPS.........cooiiiiiiiiiiiiiies e a7

Chapter 5: Using SSIS with DBAMP i e 48

Create a Canection for DBAMP.....cccveiieeiiiiiiiiiee s eveeeviinineeee e s e 48
Using DBAMp as an OLE DB SOUICE......ccccceevviiiiiiiiieeiiis ceeevviiieeeaen 48
Pushing Data to Salesforce.com using SSIS.........cccccoiieiiiiicns v, 49

Chapter 6: Uploading files into Content, Documents and Attachments

Chapter 7: Creating Database Diagrams and Keys —cccccvevecveveenen, 56
Creating a Primary KeY........ccoooiiiiiiiiiiiiis e iees eeens 57
Creating FOreign KeYS.......ccoiciiiiiiiiiiiiiies et e 57
Creating a Database Diagram..........cccccvveeiiiiiiiies cvvveeeeeesiinneeeee e 57
Chapter 8: Using Excel with Views to Linked Server Tables ... 59
Create Views of the SALESFORCE linked server tables...................... 59
USING EXCEL...ciiiiiiiiiiiiiiciiis et eeriiee e 60
Chapter 9: DBAmp Stored Procedure Referen (o7 TR 65
SF_BUIKOPS ...ttt ettt riees eeee e e 66
SF_BUIKSOQL.......ovveeeiieeeirsines veresisseseseessesssessenene aveneesessssannens 71
SF_COlICOMPAIE...ccciiiiiiiiiiiccceccceies s aeeeeaaaeaaa 74
SF_CreateKeYS. .ot e e 75
SF_DowWnloadBIODS.........ccooiiiiiiiiiiiiiis e e 76
SF DIOPKEYS. ..ottt it e 78
SF _GENEIALE.....o i e e 79
SF _REfre@SH....eiii s e 80
SF_REfIEShIAD. ... e e 82
SF_RefT@SNAIL.....oviii e e 83
SF_RePHCAte......ccco it s e ——— 85
SF_RePICAIEKAV......ooiiiiiiiii et e e 87
SF_R@IlicateHIiStorycoooi oot e 88
SF_RepliCateAlL..........coo et s e 89
SF_REPICALEIAD.......cci it s e 91
SF_ReplicateLarge.......ccoooiiiiiiiiiiiii e e 93
SF_MigrateBUIlder..........cooiiiiiiiiis e aereeee 95
SF_MigrateGraphML..........ccoviiiiiiiiiiiis e e 98

52

Chapter 10: Using the DBAmp Configuration Program ~ 100

Options Page of the DBAmp Configuration Program............cccccceeeenn. 100
1. DBAMP WOrk Dir€Ctory......cvvveeeiiiiiiiiieeiiies ceevviiivneeeen 101
2. DBAMP BIOD DIr€CLONY......cvvveeiiiiieiiiiie i e 101
3. Enable APl Trace........cooceiiiiiiiiiiiiiiis e 102
4, Trace DIrECIOIYuvviieeei i cveviirer e e e e srree e 102
5. SQL Login INit STHNGccooiiiiiiiiieiiens e 102
6. Use Proxy for Salesfor@ connection.............ccccooecvuveeeen. 102
7. Proxy USername.........cccoviviiiiniiiiiiiis i seeeeevininns 102
8. Proxy Password.........ccccccviiiiiiiieiins ceveeeeciineee e 102
9. ProxXy URL.....ccooiiis v, ... 102
10. Proxy ConfigureURL.........cccocciiiiiiiiiiiiis e 102
Registry Settings Page of the DBAmp Configuration Program 102
1. Metadata OVErTidecoocvviiiiiiiiiiiies e 104
2. Base64 Maximum Field Size..........cccoooeiviiiiiiies e 104
3. Network Receive TIMEOUL...........ccoceeviieeeiiiies eeerrreeeens 104
4, Network Connect TIMeOUL.........ccocvveiiiiiiiie reverineen 104
5. BUIKAPI Status TIMEOUL..........ccceevviiiieiiiiiens cviiieeeiienn 104
6. BUlKAPI Polling Interval..........ccccovvviiiiiiiiiiies ceeeeeeeeeieen, 105
7. Minimum Long Size.........ccoveiiiiiits s 105
8. Convert Currency Fields toSingle Currency..................... 105
9. Translate Picklist Values...........cccooeiiiiiiiccns v, 105
10 Use UTC for all DateTime Fields..........ccccccvvviviiienns e 105
11 Use Bit Column TYpPe.......oooiiiiiiciccis eeveeeeeeeeeee e 105
12 Add Assignment Header.........cccccviiiiiins e, 106
13 Use NText Column TYPE......cvvvvveviieieieeeeiiies i, 106
14 Use TriggerOtherEmail Header...........ccccvvvvvvvvveveenns oo, 106
15. Use TriggerUserEmail Header...........ccccoviieiviiies e 106
16. Use TriggerAutoResponseEmail Header......................... 106
Chapter 11: Retrieving Salesforce Metadata =cccccooeviiiieenne 108
How to run the SF_Metadata proc..........ccccevviieeiiiiices coviiieeeiniieeenns 108
Using the LIST and RETRIEVE operations..........cccccevviiieeviiies eveene 108
Requirements for the input tableccccciiiiiis i, 109
Example: Retrieve Dependent Picklist Informationc.occeveeeee. 111
Example: Retrieve Field DesCriptionS.........cccovcveeiiiiiiiiiies veeeeviieeees 112

Chapter 12: Using DBAmp Performance Package ... 114

Installing the DBAmMp Performance Package...........cccoccvveveeeviices eons 114
Using the DBAMpP_Log Table......ccoocveeiiiiiiiiiiis e 116
Using the Performance VIEWS. ..o e 117
DBAMp_Replicate_Perf VIEW.........ccccoviiiiiiiiiis e 117
DBAMpP_Refresh Perf VIEW.........coccviiiiiiiiiiiis cvieieee s viineeee e 118
DBAMP_BUIKOPS_Perf VIEW......ccuviiiiiiiiciiiiiiins e 119
Using Excel with the Performance VIiews.........c.ccccccviiiiiiiics evvviienn, 120
Enabling the Performance Trace.......ccccccccvviiiiiiieeens ceveeeviiiieeeeeen 121
Chapter 13: Using DBAmMp with Splunk ..o e, 123
INStalliNg SPIUNK ...cooiiiiiiiiiiis e e 123
Setting up DBAmMp to Splunk Enterprise........cccccvcevviiiiiniiies eevevinenn, 123
Setting up DBAMP to Splunk Lightcovviiiiiiiiiiiiiiiiiiies v, 123
Configure Monitoring Inputs for DBAmMp to Splunkcccccevvneene 124
Configure Splunk Universal Forwarder with DBAmp to Splunk........... 125
Setting up DBAmMp Performance package to Splunk...........c.ccceeveeeee. 126
Best Practices for DBAmp to Splunk Functionality............ccccevveeeeeeen. 127
DBAMP APl Dashboard..........cccccoviiiiiiiiiiis coviiiee i e 127
DBAmp Stored Procedures Dashboard............ccccocoeiiiiiiies coveveinenns 128
Chapter 14: MigrateAmMP oo cececcrereies e see e 130
What iS MIigrateAMP?...ccoceeeiiiiiie i eeee e s 130
Installing Migrat@AMPccoocuiiiiiiiieieis e e 130
MigrateAmp Approaches..........ccccccccits e .. 131
Understanding MigrateAmp ConceptS.......covvvvveeeeeeiieeiies e, 131
Migrate Amp WOrkflow ...t e 135
Migrate Amp ArchiteCtUrecoooviiiiiiiiiiiiiis e .136
Chapter 15: Using MigrateAmMpP oo e 139
Using the SF_MigrateBuilder Stored Procedures..........cccccccoevcvvveen... 139
Running SF_MigrateBuilder in User Interface...........cccccveveeennneen. ... 140
1. Connect to SQL Server Button........cccooeevvvvvviiiiciinns veeenn, 141
2 Choose a Source DB.........ccccovcivieiiiiiiins e 141
3. Choose a Source Linked Server........ccccccovvveivicicens e 141
4 Select Key Objects from the Source Instance................... 141

5. Choose a Children Option.........ccceeeviiiiiiiiiies eeeeeeeees 141
6. Choose a Parent OptioN......cccccoovccivieeieeiiiies cvvviiiieeeeen, 141
7. Choose Feature Options.......ccccccveevvvciiiiiieeins ceveevviiennnen 142
8. Generate List of Tables BULtON..........ccccocveveviiiiines e, 142
9. Choose a Target Linked Server.........ccocccvvvveiniiiens e 142
10. Choose a Target DB........cccooviiciiiiieeiiiiies cevviiviieneeessananns 142
11. Enter an Name PrefiX.......cooociiciies v, 142
12. Run SF_MigrateBuilder BUtton............ccccoovveeiiiies cenee 142
13. Save Output to File BUttON...........ccccveeeeeiiiiiiins civiieeeeen, 143
14. Review OULPUL BOXccvviiiiieeiiiiiiiiiieees aeeeeeevsiiinneeaeen 143
Running SF_MigrateBuilder in SQL Management Studia................... 143
Replicating the Source org data..........cccoocveieiiiiiiiiis cveveeriieeenieeenn 144
Loading the Target org dataccccccciiiiiiiies cevvveieieeeeeeee e, 145
Resetting the Target org data if neededccccoevvviins e 145
An in-depth look at the SF_MigrateBuilder Parameters...................... 146
Passing Parameters to _Load Stored Procedure................c.c.ooooo. 148
Migrating Salesforce CRM Content..........cccoooiiiiiiiiiiiies cvvvvveeeveeeeeeen, 149
Migrating Salesforce Knowledge...........ccoocveiiiiiiiiiis vvveeiiieeenieeenn 150
Migrating Single Salesforce Knowledge Article Type........ccccvvvvvveeneee. 151
Migrating Multiple Salesforce Knowledge Article Types.........ccccvvvnneee 151
Associating Knowledge Articles with CaseS.........ccccevveeeiiicciie v 152
Frequently Asked QUESHIONS........ccuiiiiiiiiiiies e 153
Chapter 16: Viewing a Migration Database Diagram 155

Acknowledgments

Thanks to Sarah Parra of Microsoft. Without her excellent support, DBAmp
woul dnét exist.

Also, thanks to Dave Carroll at Salesforce.com for being the "Original"
sForce programmer. Dave's sample code always points the way for the rest
of us.

And finally, thanks to those customers who have contributed ideas and
designs for several important features of DBAmp:

C.J. Land Local copy replication
Andy Hilliard Sys_sfPickList

Darrell Grissen Sys_sfLastld

Tad Tjornhom Bulk I nserting
Paul Coyne sf_replicatelAD
John Gee Metadata support

Chapter 1: Installation/Upgrading

| Upgrading an existing installation

If you are upgrading an existing installation, please do the following.
1. Stop SQL Server.

2. Run the DBAmp installation program. You will need your serial
number for installation. Please contact support@forceamp.com if
you need help with this value.

3. Your previous linked server definition can be use without
modification.

4. The DBAmp stored procedures change wih every release. You must
upgrade every SQL database that currently contains DBAmp stored
procs with the new versions. Follow the instructions in the Install
the DBAmp Stored Procedures section later in this chapter.
Failure to do this will result in erro rs.

5. Because the new version may connect to a newer APl endpoint,
additional fields and objects may become visible with the upgrade.
If you are using sf_refresh for local copies, you must run
sf_replicate on that object to pickup these schema changes. Then
you can resume your normal sf_refresh schedule.

Note that there are major, breaking changes that have occurred recently
with DBAmp.

- DBAmp only supports SQL 2005 or higher.
- DBAmp only supports Windows 2008 R2 or higher.

- DBAmp only support 64 bit Windows OS.

DBAmp requires the .NET 4.5 library or higher

- SQL 2008 or greater and datetime2(7). On SQL 2008or greater
systems, date and datetime fields of salesforce.com objects are now
created as datetime2(7) fields in the local database. To force these fields
to be created as datetime fields instead, set the Database Compatibility
Level of the Salesforce backup database to 90 prior to replicating the data
(step 5 above). This change applies to SQL 2008 and greater only.

Prerequistes

Before installing DBAmp, make sure that an instance of SQL Server 2005 or
greater is installed on the machine. If you do not have SQL Server, you
may download the SQL Server 2008 Expresswith Database Tools, which is
available for free from Microsoft. In addition, be aware that DBAmp only
supports Windows 2008 R2 or higher.

mailto:support@forceamp.com

IMPORTANT: If you are using SQL Server Express, make sure you
download the package from Microsoft that contains the Database
Tools. You will need the SQL Management Studio tool to complete
the DBAmp in stallation.

There is an outstanding Microsoft issue that affects DBAmp. This issue only
occurs when the service account that you specify for SQL Server is the
Network Service account. Pleaseuse a different service account (like a
user account) for the SQL Server instance We recommend that you use the
LocalSystem accountor an admin domain.

Running the DBAmp installation file

To install DBAmp, unzip the DBAmp package to a temporary directory and
run the Setup program. Setup will prompt you for the DBAmp program
directory and install the software.

To uninstall DBAmp, use the Windows Add/Remove Programs option on the
control panel.

Configure the DBAmp provider options

NOTE: DO NOT SKIP THIS STEP. DBAMP WILL NOT FUNCTION PROPERLY.

Expand the Providers tree entry in the Object Explorer (Server
Objects/Linked Servers/Providers). Right click the DBAmp.DBAmp provider
entry and choose Properties .

Checkonly the following options:
Dynamic Parameters
Allow InProcess
Non transacted Updates
Verify the above options for proper operation of the provider.

The next step is to create the linked server.

Connecting DBAmp to SQL Server

Also, please see the note at the beginning of the chapter concerning the
Microsoft issue of using Network Service asthe SQL Server Service
account.

DBAmp is designed to be used as a linked server. To install DBAmp as a
linked server, use the SQL Management Studio and perform the following
steps:

1. Using the SQL Server Management Studio, use the Object Explorer
window and expand the Server Objects branch to display Linked
Servers .

10

2. Right click on Linked Servers and choose New Linked Server...

Enter the following information for the new Linked Server:

General Page

Linked Server: Enter SALESFORCE
Provider: Choose DBAmp OLE DB Provider

Product Name: Enter DBAmp
Source: Enter SALESFORCE

Location: If you are connecting to a sandbox, enter
https://test.salesforce.com . Otherwise, leave blank.

Security Page

Click Be made using th is security context:
For Remote Login:, enter your salesforce.com Userld.

For With password: enter your salesforce password. If needed by
your salesforce organization, append the salesforce security token to
the end of the password. For more details on salesforce security
tokens, see the Security Tokens section in the online salesforce
help.

Server Options

Check the following are true (leaving all other options false):
A Collation Compatible
A Data Access
A Use Remote Collation
A RPC Out

A Enable Promotion of Di stributed Transactions

3. PressOK to create the SALESFORCE linked server.

Verifying the linked server

Use the following procedure to verify that the linked server is set up
correctly:

Execute the following query using the SQL Management Studio:
Select * from SALESFORCE...sys_sfobjects

You should see a list of all your salesforce.com objects.

11

https://test.salesforce.com/

Install the DBAmp Stored Procedures

The next step to install DBAmp is to create a database and create the
DBAmp stored procedures. The database you create contains not only the
DBAmp stored procedures but also the local replicated tables you make
from your live Salesforce.com data.

To install the DBAmp Stored Procedures:

1. 1. Using either the SQL Enterprise Manager or the SQL Management
Studio, create a new database named salesforce backups .. This
database will hold all the local replicated tables as well as the
DBAmp stored procedures.

2. Open t he@reateiDBAmpBPROCS. sqglo in Query Analyzer
Management Studio but do not execute it yet. The file is located in
the \Program Files DBAmMp\SQL directory.

The stored procedures assume that you have installed DBAmp in the
directory c:\"Program Files'\DBAmp. If you used an alternate drive
or directory, you must find all occurrences of C:\"Program
Files\DBAmp\ and replace them with the correct directory.

3. Make sure that default database shown on the toolbar is the
salesforce backups database (and not the main database). Then,
execute (F5) to add the stored procedures to the database.

Running the DBAmp Configuration Progra m

In order for the DBAmp stored procedures to work properly, you must run
the DBAmp configuration program and enter your SQL credentials along
with any additional proxy information needed by DBAmp.

You must display the Options dialog and press OK for the settings
to be saved (press OK even if you do not make changes).

Note: Normally, DBAmp handles the proxy automatically. If you are having
trouble connecting or need to setup your proxy information manually, you
can use the DBAmp Configuration Program to enter your proxy information.

To run the DBAmp Configuration Program:

1. From the Start menu, run the DBAmp Configuration program
located under DBAmp. Under the Configuration menu, select
Options .

2. Choose a DBAmp Work Directory. The DBAmp Work Directory hold
the work files produced by the Replicate Stored Procedures when
using the BulkApi or PKChunk options. . Use the Browse button
to create, find and set the work directory. Make sure the directory is
on a drive with enough space. Large downloads will expand the size
of this directory dramatically.

12

3. Enter your SQL credentials. If you are using Windows
Authentication, use the default value of
Trusted_Connection= Yes

4. If you need to enter proxy information, check the Use Proxy for
Salesforce connection checkbox.

5. Enter the appropriate proxy information:

Proxy Username
Proxy Password

Proxy URL

Proxy ConfigURL

Username for the proxy login.
Password for the above username.
Direct proxy URL.

Proxy script URL.

When a script URL is set but the proxy address cannot be accessed, for
example, the address is only available inside a corporate network but
the user is logging in from home, DBAmp will use the direct URL if it
has been set, or try a direct connection if the direct URL has not been
set.

If a direct URL is set and it cannot be accessed, DBAmp will not try a
direct connection. This is the same behavior as Internet Explorer.

Click OK. The credentials are stored in encrypted form for use by
the DBAmp stored procedure s.

Setting up the DBA mp Work Directory

The DBAmp Work Directory holds the work files produced by the Replicate
stored procedures when using the BulkApi or PKChunk options . The
Work Directory must be setup before running the Replicate stored
procedures when using the BulkAPI or PKChunk options.

To setup the DBAmp Work Directory follow the instructions below:

1. Run the DBAmp Configuration Program on the server DBAmp is
installed on.

2. Navigate to the Configuration/Options page

3. Use the DBAmp Work Directory Browse button to create a Work
Directory on the server

4. Click OK

Note: Make sure the directory is on a drive with enough space.
Large downloads will expand the size of this directory dramatically.
Also, the SQL Server instance must be able to read and write to this
directory.

13

Pointing DBAmp to your Salesforce Sand box Instance

By default, DBAmp points to your production Salesforce.com instance. If
you need to change DBAmp to point to your Sandbox instance or need to
use a different endpoint for DBAmp, alter the Location parameter of your
linked server.

The Location parameter is normally blank. If your Sandbox Instance is at
https:// test.salesforce.com then you would enter

https:// test.salesforce.com for the Location Parameter on the linked server
properties page.

14

Chapter 2: Using DBAMP as a Linked $8rver

When using DBAmp as alinked server, you can access salesforce.com
tables as if they were SQL server tables.

Four Part Object Names

To refer to a salesforce.com object in a SQL statement, use the four part
object name containing the name of the linked server and the object name
separated by three periods. For example, to select all rows and columns of
the Contact object:

Sel ect * from SALESFORCEéCont act

The linked server name (SALESFORCE) and the table name (Contact) are
case sensitive.

SQL versus SOQL |

There are 2 ways to query real time data from salesforce: use the four part
object name with SQL or use the OpenQuery clause with SOQL.

Using the four part object name and SQL |

You may use the full Transact SQL syntax when entering SQL statements.
Internally, SQL Server and DBAmp will translate your SQL statement into
the appropriate SOQL statements for salesforce.com. Any elements that
cannot be done in SOQL (like SQL functions) will be done locally by the SQL
Server Distributed Query optimizer after retrieving the result set from
salesforce.com.

The SQL Server Distributed Query Optimizer will choose a plan for every
SQL statement that executes. Often, the plan chosen will be the most
efficient and there will be no need to modify your SQL.

Should you suspect a poorly performing plan, use the Query Analyzer and
enter the text of the SQL statement. Remember to use the 4 part naming

convention for the Salesforce.com tabl
For maximum performance when joining, consider using the OpenQuery
clause with SOQL (described in the next section.
Note the following when using SQL:
1 Do not enter unquoted date literals. Instead, use Transact SQL
syntax for date literals (i.e. include quotes)
fFor SOQL Boolean fields, use quoted

false).

1 You may use * to indicate all columns.

15

es

ter

C

1 Following Transact SQL rules for where clause AND/OR precedence.
Parentheses are only needed when explicit grouping is needed and
are not required (unlike SOQL).

1 User and Case are keywords in Transact SQL and must be quoted
when used as a four part name to r efer to the salesforce.com
object. For exampl e, specify the User Object a

| Using OPENQUERY and SOQL

When additional join performance is needed, consider using the
OPENQUERY clause with DBAmpUsing OPENQUERY allows you to pass
salesforce.com SOQL statements (not SQL) directly to DBAmp. A full
description of the SOQL language can be found on the salesforce.com
website at :

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTop
ic=Content/sforce_api_calls_soql.htm

Using OPENQUERY witl5OQL can make dramatic performance differences
on data that is joined. With SOQL, the join is performed back at the
salesforce.com server as opposed to locally at the SQL server.

select * from openquery (salesforce |

' SELECT Type, BillingCountry,
GROUPING(Type) grpType, GROUPING(BIllingCountry) grpCty,
COUNT(id) accts

FROM Account

GROUP BY CUBE(Type, BillingCountry)

ORDER BY GROUPING(Type), GROUPING(BillingCountry)')

- DBAmp currently supports both child to parent relationship
queries and Parentto ch ild queries .

For example,

select * from openquery (salesforce

' SELECT Account.Name, (SELECT Ownerld FROM Account.Notes) FROM
Account')

select * from openquery (salesforce
' SELECT Id, Who.FirstName, Who.LastName FROM Task');

- The where clause of the SOQL statement must be expressed using
SOQL syntax , not SQL syntax.

16

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql.htm
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql.htm

For example,

Select * from OpenQUery(SALESFORCE

' Select Opportunity.Account.Name,
Opportunity.Account.AnnualRevenue, Opportunity.Name,
Opportunity.CloseDate, Opportunity.StageName, Description,
Quantity

From OpportunityLineltem

Where (Opportunity.Account.AnnualRevenue >200 AND
Opportunity.CloseDate < 2 009- 08-29)")

is a supported SOQL statement because the date value is not in quotes.

Select * from OpenQuery (SALESFORCE SELECT Id FROM Account
WHERE Owner.CreatedDate = LAST_N_DAYS:200')

is also supported because it uses a SOQL date literal.

Note that datetime constants must be entered in ISO8601 format per the
SOQL requirements.

Understanding hierarchical salesforce.com data when
using OPENQUERY and SOQL

Note: The following is only applicable when using SOQL and OPENQUERY.
When joining the linked server tables using standard SQL, the result table is
constructed using normal relational concepts and not as describe here.

For OPENQUERY SOQIDBAmMp uses a special algorithm to "flatten” parent-
child salesforce.com data into a two-dimensional table.

SQL Sener results are two-dimensional with rows and columns. Because
salesforce.com data can have more than two dimensions, a flattening
algorithm is used to force the data into a two -dimensional format.

When flattening salesforce.com data in SQL Server, the column headings

are an indication of the source of the column and essentially contain the
navigation through the "tree" of returned data to get to that column. You

can read the column structure backwards to get to the root object, the

lookup objects, and related lists. For example, the column
Account_LastModifiedBy_Alias is the Alias field of the LastModifiedBy lookup
object for the Account root object.

There is a row of the root object for each object in a related list. When
there are two related lists, the root object in the flattened result gets
repeated by the sum of the count of all of the rows of the related lists. For
example, if an Account root object has five Contacts and eight Cases, the
root-object data is repeated in the result table thirteen times .

17

In the flattened result, fields of the Contact related list are shown with the
root object, along with fields of the Cases related list and the root object.

For rows where Contact data is returned, the Cases columns are null; for
rows where Cases data is returned, the Contact columns are null. The fields
are null because there really is no relationship between Contacts and Cases.

When the query contains a root object and multiple related lists, DBAmp
repeats the root-object data, the sum of the count of all of the related lists.
For example, if five related lists each had five items in them, the root
object is repeated 25 times. Rows for related lists are displayed and the
values in each row for the other related lists are null because they are not
applicable.

Passing Parameters in SOQOL queries

To use parameters in a SOQL query, you must use the EXECUTE statement
of T-SQL. Here is an example:

CREATE TABLE RevByAccount
(Name nvarchar(255) NULL,
AnnualRevenue decimal(18,0) NULL

DECLARE @MinRev INT
SET @MinRev = 20

INSERT RevByAccount

EXEC ('SELECT Name, AnnualRevenue FROM Account WHERE
AnnualRevenue > ?' ,

@MinRey AT Salesforce

go

Inserting rows using SQL

To insert new rows, use the standard SQL Insert statement. Do not include
the read-only columns (i.e. Id, LastModifiedld, etc.) in the fields list. For
example, to insert a new Note use the following SQL:

INSERT INTO SALESFORCE...Note (Body, IsPrivate, Parentld, Title)
VALUES('Body of Note 2','false’, '00130000005ZsG8AK','ToDelete")

For maximum scalability, please consider using the sf_bulkops stored
procedure instead of SQL Insert statement. The sf bulkops stored

18

procedure takes advantage of the ability to batch together insert requests
to the salesforce.com api.

Updating and Deleting rows using SQL

DBAmp supports updating and deleting Salesforce.com objects with SQL.
In order to get the maximum performance with your UPDATE and DELETE
statements, you need to understand how SQL Server handles
UPDATE/DELETE statements wth a linked server (like DBAmp).

For example, take the following SQL UPDATE
Update SALESFORCEéAccount
Set AnnualRevenue = 4000
Where 1d='"00130000005ZsG8AAK’

Using the Display Estimated Execution Plan option from the Query
Analyzer, you can see that SQL Server will retrieve the entire Account
table from Salesforce and then search for the one row that has the Id of
00130000005ZsG8AAK Then, SQL Server will update the AnnualRevenue of
that row.

Obviously, this UPDATE statement has poor performance which gets worse
as the size of the Account table grows. What we need is a way to retrieve
only the row with Id 00130000005ZsG8AAKand then update the
AnnualRevenue of that row. To do this, use an OPENQJERYclause as the
table name.

Update OPENQUERY(SALESFORCE,
'‘Select Id, AnnualRevenue from Account
where 1d="00130000005ZsG8AAK" ")
set AnnualRevenue = 4000

Using an OPENQUERYlause insures that we retrieve only the row with the
proper Id.

You can construct stored procedures that make your code more readable
and that use the above technique. See the Create SF_UpdateAccount.sql
file in the DBAmp program directory as an example. Using this stored
procedure, we can do updates to the Account table using the following SQL.:

exec SF_UpdateAccount '00130000008hz55AAA",'BillingCity',"'Denver""
or
exec SF_UpdateAccount '00130000008hz55AAA','AnnualRevenue’,'20000'

You can use the SF_UpdateAccaont stored procedure as a template for
building your own specialized stored procedures. See the file Create

19

SF_UpdateAnnualRevenue.sql for an example. Then, use the following
SQL to update the Annual Revenue of an account.

exec SF_UpdateAnnualRevenue '0013 0000009DCECAAQ!', 30000

Deleting rows with SQL has the same caveats. For best performance with
deletion by Id, use an OPENQUERY clause in the SQL statement. An
example of a stored procedure that deletes Accounts by Id is in the file
Create SF_DeleteAccount. sql.

For maximum scalability, please consider using the sf_bulkops stored
procedure instead of SQL Update or Delete statements. The sf_bulkops
stored procedure takes advantage of the ability to batch together requests
to the salesforce.com api.

Joining S alesforce.com Tables

Using joins, you can retrieve data from two or more tables based on logical
relationships between the tables. Joins indicate how SQL Servershould use
data from one table to select the rows in another table.

Joins can be specified in either the FROM or WHERE clauses. The join
conditions combine with the WHERE and HAVING search conditions to
control the rows that are selected from the base tables referenced in the
FROM clause.

Specifying the join conditions in the FROM clause helps sepaate them from
any other search conditions that may be specified in a WHERE clause

In addition, consider using the OPENQUERY and SOQL feature (see
above) for maximum performance when joining to salesforce.com
tables.

Analyzing Performance when Joining Tables

The SQL Server Distributed Query Optimizer will choose a plan for every
SQL statement that executes. Often, the plan chosen will be the most
efficient and there will be no need to modify your SQL.

Should you suspect a poorly performing plan, use the Query Analyzer and
enter the text of the SQL statement. Remember to use the 4 part naming
convention for the Salesforce.com tabl

Choose the Display Estimated Execution Plan option from the Query
menu to view the execution plan.

While a full discussion of execution plans is beyond this document, most
SQL Select with join statements involving Salesforce.com data will choose
to either return the entire result set of a table or read the needed rows
with a parameterized query.

For example, consider the following SQL Select:

20

es

Select T1.Name, T2.Salutation, T2.FirstName, T2.LastName
from SALESFORCE...Account as T1, SALESFORCE...Contact as T2
where T1.ld = T2.Accountld and T1.AnnualRevenue > 20000

Here is the initial execution plan:

|--Hash Match(lnner Join, HASH:
([SALESFORCE]...[Account].[1d])=([SALESFORCE]...[Contact].[Accountid]),
RESIDUAL:([SALESFORCE]...[Contact].[Accountld]=[SALESFORCE]...[Accou

nt].[1d]))

|--Remote Query(SOURCE:(SALESFORCE), QUERY:(SELECT T1."Id"
Col1004,T1."Name" Col1005 FROM "Account" T1 WHERE
T1."AnnualRevenue">(20000.0000)))

|--Remote Query(SOURCE:(SALESFORCE), QUERY:(SELECT
T2."Accountld" Col1007,T2."LastName" Col1010,T2."FirstName"
Col1008,T2."Salutation" Col1011 FROM "Contact" T2))

This plan will bring down from the Salesforce.com server all of the Contact
records. If most of our Accounts have Annual Revenue of > 20000, then
the plan is efficient because most of the Contact records will be needed.

If, however, only 3 Accounts have AnnualRevenue > 20000 and the other
1000 Accounts do not, then the plan is inefficient. The Contact query will be
retrieving more Contact records than we actually need to build the result
set.

Letds change the SQL Select to use an inner r

Select T1.Name, T2.Salutation, T2.FirstName, T2.LastName

from SALESFORCE...Accountas T1

inner remote join SALESFORCE...Contact as T2 on T1.ld = T2.Accountld
where T1.AnnualRevenue > 20000

Now the execution plan shows a different choice.

|--Nested Loops(Inner Join, OUTER
REFERENCE: ([SALESFORCE]...[Account].[ld]))

|--Remote Query(SOURCE:(SALESFORCE), QUERY:(SELECT T1."Id"
Col1010,T1."Name" Col1011 FROM "Account" T1 WHERE
T1."AnnualRevenue">(20000.0000)))

| --Remote Query(SOURCE:(SALESFORCE), QUERY:(SELECT
T2."Salutation” Col1007,T2."FirstName" Col1004,T2."LastName"
Col1006 FROM "Contact" T2 WHERE T2."Accountld"=?))

In the Contact Query, we will now use a parameter in the query

(AAccountl Do=?) to read only the contact reco
more efficient way to get the same result.

21

Using BIT datatype with DBAmp

When returning results to SQL Server, DBAmp must choose a datatype to
use for salesforce.com Checkbox fields. By default, DBAmp uses
VARCHAR(5) and populates the column with either the values of FALSE or
TRUE.

If you are using SQL Server 2005 or later, you may wish to use the BIT
datatype instead for salesfore.com Checkbox fields. Use RegEdit and alter
the value of LOCAL_MACHINE/SOFTWARE/DBAmp/BitBoolean to a value of
1. Then restart SQL Server for the new value to take effect.

If you are replicating tables locally, you must run a replicate of those tables
after changing this setting. This will recreate the tables using the BIT
datatype.

Using Dates with DBAmp

When returning results to SQL Server, DBAmp converts Datetime values
from UTC into the local timezone.

In addition, any datetime values used in a WHERE clause are assumed to be
local times and not UTC times.

If you would prefer to have DBAmp always use UTC for all datetime values,
you can modify the DBAmp registry settings with the following procedure.
Note: this is not recommended but possible. Please contact forceAmp.com
support to understand the ramifications of UTC and DBAmp.

1. Using the Start/Run option, run the regedit program.

2. Navigate to the following key: HKEY_LOCAL_MACHINE /&tware /
DBAmp .

3. Right click DBAmp and choose New DWORD Value . Name the key
NoTimeZoneConversion (watch case and spelling).

4. Right click the newly created NoTimeZoneConversion and choose
Modify . Then assign a value of 1.

22

Using DBAmp System Tables (sys_sf tables)

In addition to the Salesforce.com tables, DBAmp also provides various
system tables that you can access with SQL SELECT statements. These
tables are read-only; they cannot be updated or deleted.

Also, Select statements for these tables cannot contain a WHERE clause. If
you need to use a WHERE clause, define a userdefined-function that
encapsulates the table. See Create DBAMP UDFS.sql for an example.

Table Name Contents

sys_sfsession The sys_sfsession table contains
information about the current

Select*from SALESFORCEE€ésys _s Salesforce.com session. Some of the
columns in this table are:

Sessionld i Current Session Id
Organizationld 7 18 char Orgld
ServerURLT URL of SForce Server

sys_sfpicklists The sys_sfpicklists table contains
information about the picklist values for

Select * from SALESFOR!each picklist field There is one row for
each per picklist value. Some of the
columns in this table are:

ObjectName i Name of object
FieldNamei Field of the above object
PickListValuei A single picklist value
PickListLabeli Label for the above value

sys_sfobjects The sys_sfobjects table contains
information about the Salesforce.com

Select * from SALESFORIgpjects. There is one row for each object
in your organization. Some of the
columns in this table are:

Name i Name of object

Createable 1 Is object createable ?
Deletable 7 Is object deletable ?
URLDetal i URL Detail for this object
URLNewi URL New for this object

23

sys_sffields The sys_sffields table contains
information about the Salesforce.com

Select * from SALESFORI!gpjectfields. There is one row for each
object field in your organization. Some of
the columns in this table are:

ObjectName i Name of object

Name i Name of the field

Createablei Is the field insertable ?
Type i Field Type using sf terminology
SQLDefinition 7 SQL Column definition

Using Count() with salesforce.com objects

There are two methods of obtaining a row count of salesforce.com objects.
The first method uses the following SQL:
Select Count () from SALESFORCEéAccount

This SQL statement executes by retrieving all the Id values of the object
and counting the total number of Id values fetched. While this method
performs quickly for small tables, large tables perform badly because all the
|l dés are f et che dSenvestoberceuntedh c a l SQL

The second method performs much better because it takes advantage to
the salesforce api SOQL Count function:

Select * from
OPENQUERY(SALESFORCE,'Select Count() from Account ')

In the OPENQUERY clause, replaceSsALESFORCE with the name of your
link server. Also, notice that the table name Account is NOT prefixed with
"SALESFOR'CEE®

Using DBAmp to convert currency amounts to a default currency

International organizations can use multiple currencies in opportunities,
forecasts, reports, and other currency fields. The administrator sets the
"corporate currency," which reflects the currency of the corporate
headquarters.

If an organization is multicurrency enabled, you can configure DBAmp to
convert currency fields to a single currency. DBAmp uses the default
currency of the salesforce.com user id configured in the link server. DBAmp

24

converts currencies using the ConverCurrency() function of the
salesforce.com API.

Note that the default is NOT to convert currencies . You must set the
registry entry ConvertCurrency in the DBAmp hive for currency conversions
to occur. The ConvertCurrency registry setting is found under the following
registry key:

LOCAL_MACHINE \ SOFTWARE\ DBAmp \ ConvertCurrency

A value of 1 causes the conversion to occur. A SQL restart is required after
modifying this value.

SOQL statements entered via an OPENQUERY phrase do not honor this
setting. If you need to convert currency inside an OPENQUERY, then use
the CONVERTCURRENCY function:

select * from openquery (salesforce
'Select Id, convertcurrency(annualrevenue), ToLabel(type)

from Account')

Using DBAmp to return translated values for picklists

If an organization uses multiple languages, you can configure DBAmp to
return translated values for picklist fields b y using the ToLabel function.

Note that the default is NOT return translated values . You must set
the registry entry ToLabel in the DBAmp hive to use translated values. The
ToLabel registry setting is found under the following registry key:

LOCAL_MACHINE \ SOFTWARE\ DBAmp \ ToLabel

A value of 1 causes the ToLabel function to be used. A SQL restart is
required after modifying this value.

SOQL statements entered via an OPENQUERY phrase do not honor this
setting. If you need to return translated values inside an OPENQUERY,
then use the TolLabel function:

select * from openquery (salesforce
'Select Id, convertcurrency(annualrevenue), ToLabel(type)

from Account')

Retrieving Archived and Deleted records

Normally, the salesforce api does not return archived and deleted records
as part of the result of a query. Therefore, the query result from DBAmp
does not contain these records.

25

If you would like to include the archived and deleted records, add the
_QueryAll prefix to the table name. For example, the following q uery
retrieves only the task records that have been archived:

Select * from SALESFORCEéTask_ QueryAl/
where IsArchived = 'true’

You may also replicate all records including archived and task records to a
local table by using the sf_replicatelAD stored procedure. See the
SF_ReplicatelAD section in chapterDBAmp Stored Procedure Reference

Using Column Subset views

Objects in salesforce that contain over 325 columns may produce an error
when either replicated or refreshed. The error occurs because the maximum
limit of the Select query statement in the salesforce api is 10,000
characters. A large number of columns in an object will produce a Select
guery larger than 10,000 characters.

The solution is to take advantage of Column Subset views. These views
represent a user specified subset of the columns designed to 'fit' within the
10,000 character limit.

By attaching a specific suffix to the table name, DBAmp will include only
those columns with names that fall within the alphabetic range. For
example, the following SQL statement will return all columns with names
beginning with any letter between A and M inclusive:

Select * from SALESFORCEéAccount ColumnSubset

Some system columns are returned unconditionally for every subset view.
The Id, SystemModstamp, LastModifiedDate, and CreatedDate columns are
always returned.

The suffix must have the following format: a single underscore, the word
ColumnSubset and two single letters indicating the alphabetic range.

In order to retrieve a full copy of the object data, us e two or more column
subset views. For example, to replicate a large Account using column
subset views use the following command:

Exec sf_replicate 'SALESFORCE','Account_ColumnSubsetAM'
Exec sf_replica te 'SALESFORCE','Account_Column SubsetNZ'

Note that ther e is nothing special about the column partition used.
Account_ColumnSubsetAK and Account_ColumnSubsetLZ would work
equally as well.

Column Subset Views can be used in Select statements(but not
OPENQUERYa#as well as the sf_replicate and sf_refresh stored procedures.

26

DBAmp and Salesforce API call Counts

Like all third party salesforce.com tools, DBAmp uses the salesforce.com api
to send and receive data from salesforce.com. Every salesforce.com
customer has a limit on the total number of API calls they ¢ an execute, org
wide, from all tools they are using. This limit is found on the Company
Information screen in the salesforce.com application.

Here are some rough guidelines for api call counts for various operations in
DBAmMp:

SELECT against link server ta bles, SF_Replicate and SF_Refresh T
DBAmMp requests data in batches of 2000 records. The salesforce server
may reduce that amount based on the width of the row. Our experience

has been that the average batch size is 1000. So for every 1000 rows of

data retrieved = 1 API call

UPDATE and INSERT statements 1 1 api call for each record updated or
inserted.
SF_Bulkops without the bulkapi switch i 1 api call for each batch of

200 records.
SF_Bulkops with the bulkapi switch T 1 api call for each batch of

10,000 records. If you use the batchsize option, then 1 api call per
batchsize

There are other miscellaneous calls DBAmp makes to fetch schema data.
These api calls are in addition to the above guidelines.

27

Chapter 3: Making Local Copies of Salesforce
Data

One common usage of DBAmp is to make periodic copies of Salesforce.com
data into a local SQL Server database.Using a combination of Microsoft
SQL Serverjobs scheduled by the SQL Server Agentand DBAmp, you can
import data from Salesforce.com and make local replicated table copies.

Conceptually, the local replicated tables are all located in a single database
that you create. On a schedule you setup, a job runs that backups the
current local table into a table name ending with _Previous. The job then
drops the previous replicated table, creates a new replicated table of the
same name, and inserts all the rows from the corresponding table of the
linked server.

You can setup retry options if the job is unable to run, perhaps delaying an
hour and retrying again.

By default, DBAmp does not download the values of Base64 fields but
instead sets the value to NULL. This is done for performance reasons. |If
you require the actual values, modify the Base64 Fields Maximum Siz using
the DBAmp Configuration Program to some value other than 0.

How to run the SF_Replicate proc to make a local copy

Now you are ready to run the stored procedure.

Note : The SF_Replicate stored procedure uses the xp_cmdshell command.
If you are not an SQL Server administrator, you must have the proper
permission to use this command. See the SQL Server documentation under
the topic xp_cmdshell for more information. To quickly test, run the
following sqgl in Query Analyzer:

Exec master.. xp_cmdshell "dir

To run the SF_Replicate stored procedure and make a local copy, use the
following commands in Query Analyzer:

Use "salesforce backups"
Exec SF_Replicate 'SALESFORCE, 'Account '

where 'SALESFORCE' is the name you gave your linked server in at
installation and Account is the Salesforce.com object to copy.

You can also setup a SQL Server job to run SF_Replicateon the schedule
needed.

28

1. Go to the jobs subtree in Enterprise Manager and right click to
create a new job.

- (L] Data Transformation Services [B]cire:
= (] Management QCJTe-
= % SQL Server Agent D'St"l
QO serts [S]expir

& Operators [S]renit
O |[Glrepi

(B2 Backup New Job...

+ ﬁ‘_.] Curreni
{8 Databa All Tasks 4
44 sQL 565 View »
(] Replication’ ey Window from Here
+ §lll Replication

(] Security | Refresh

(] SupportSe; ExportList...
+ (L] Meta Data

+ D e ‘ Help

2. Create a job with one job step with the following:
EXEC SF_Replicate 'SALESFORCE', 'Account’

where SALESFORCE is the name of your linked server and Account
is the name of the object. Be sure to set the database to the
database you created earlier. Under the Advanced tab, setup the
retry options. Also checkthe Append output to job history

option.

FELLICUT T 1Y SuLLEEUEU (O,

[Bunning Succeeded (6/
==Running Unknown

Inning Succeeded (6/

CJTest3 Properties - TOSHIBA

Edit Job Step - TOSHIBA\CJTest3

Create Account Snapshot
General | Advanced |

Step name: lCrbdeWSnapd\o(

Type: | Transact-SQL Script (TSQL) ~l
Database: [sddoa:e backups _:J
Move step: LI LI T Command: Exec SF_Snapshot SALESFORCE Accourt A

1<

[Pate |

|A
|»

Goto: New | Previous [[ok] cancel Help

29

3. Modify the job schedule for your execution schedule. You can also
execute the job now by right -clicking the newly created job and
choosing Start Job .

Viewing the job history

The output from the DBAmp stored procedures can be long and is often
truncated in the normal job history. For this reason, you should modify the
job step to retain the job output in a table or file.

To retain the entire step outpu t, edit the job step and navigate to the
Advanced tab. Check ARoute to tableo to have
message output in a table.

To view the output, return to the Advanced tab and click View.

Replicating all Salesforce Objects

You can use the SF_ReplicateAll stored procedure to replicate all of your
Salesforce objects (including custom objects). When run, the
SF_ReplicateAll proc compiles a list of all existing salesforce objects and
calls the SF_Replicate stored procedure for each object.

Salesforce objects that cannot be queried via the salesforce api with no
where clause (like ActivityHistory) will NOT be included. In addition, Chatter
Feed objects are also skipped by the sf_replicateall/sf_refreshall stored
procedures because of the excessive api calls required to download those
objects. You can modify the stored procedures to include the Feed objects
if needed.

Note: SF_Replicate assunes that there are no foreign keys defined on the
current set of local tables. If you have used the SF_CreateKeys stored
procedure to define keys, you must drop those keys with the SF_DropKeys
stored procedure prior to running SF_Replicate or SF_Replicatéll. Later,
you can recreate the keys using SF_CreateKeys. See the chapter entitled
Creating Database Dagrams and Keysfor more information.

How to run the SF_ReplicateAll proc to replicate all objects

Now you are ready to run the stored procedure.

To run the SF_ReplicateAll stored procedure and make a local copy, use the
following commands in Query Analyzer:

Use "salesforce backups"
Exec SF_Replicate All 'SALESFORCE

where 'SALESFORCE' is the name you gave your linked server in at
installation.

You can also create a job to run the SF_ReplicateAll procedure on a periodic
basis.

30

Copying only the rows that have changed

Once you have created an initial set of local, replicated tables, you can
keep those tables up-to-date by using the SF_Refresh and SF_RefreshAll
stored procedures. The SF_Refresh stoed procedure attempts to 'sync' the
local table with the Salesforce.com object without having to download the
entire data for the object.

For more information, see the SF_Refresh and SF_RefreshAll stored
procedure reference in the chapter entitted DBAmp Stored Procedure
Reference

Replicating Large Tables

Tables with large row counts (> 1 million) may require special handling
with DBAmp. DBAmp has several methods to download the rows using
di fferent salesforce api o6s.

For most large tables using the salesforce bulkapi along with the
pkchunking option is the most successful method. To use the pkchunk
option, use the following syntax:

Exec SF_Replicate 'SALESFORCE, 'Account’,” pkchunk'

The normal batch size for pkchunk is 100,000 rows per batch. You can alter
this with the following syntax:

Exec SF_Replicate 'SA LESFORCE', 'Account’,'pkchunk,batchsize(50000)

Here is a recommended order of options to try when replicating large
tables:

1. SF_Replicate with no options. This command will use the
salesforce web services api.

2. SF_Replicate with the pkchunk option. This c ommand will use the
salesforce bulkapi and the PKChunking header. The initial batch size
will be 100K but you may need to reduce that to as low as 25,000 to
get a successful result and avoid timeouts.

3. SF_ReplicateLarge . If both #1 and #2 fail, then tryt he
SF_ReplicateLarge stored proc. The SF_ReplicateLarge proc uses
the salesforce bulkapi and a local batching technique to bring down
the rows. Again, try reducing the batch size if timeout errors occur.

Including Archived and Deleted rows in the local copy

To include archived and deleted rows, use sf_replicatelAD and
sf_refreshlAD . Note that these stored procedures can only retrieve
deleted rows that are in the recycle bin. Rows that have been permanently
deleted are not available with the salesforce.com api.

SF_ReplicatelAD will retain the permanently deleted rows from run to run.
Once you begin to use SF_ReplicatelAD for a table, DO NOT USE

31

sf_replicate on that table. If you run sf_replicate instead of sf_replicatelAD,
you will lose all the permanently deleted rows in the local table.

How to run the SF_Replicate proc without dropping the local table

Now you are ready to run the stored procedure.

Note : The SF_Replicate stored procedure by default drops the local table
during this stored procedure. If you do not want the local table dropped
during SF_Replicate, use the ONoDrop6é switch.

To run the SF_Replicate stored procedure and make a local copy without
dropping the local table, use the following commands in Query Analyzer:

Use "salesforce backups”
Exec SF_Replicate 'SALESFORCE, 'Account ' , ONoDropé

where 'SALESFORCE' is the name you gave your linked server at
install ati on, Account is the Salesforce.com o
the switch to not delete the local table.

Best Practices for Replicate and Refresh schedules

Most customers will run sf_replicate at night and use sf_refresh during the
day.

If the schema of an object on salesforce is changing daily and the table is
under 25,000 records, then use the 'Yes' option of sf_refresh on runs made
during the day to force DBAmp to replicate the table and pick up the
schema changes.

If the schema of an object on salesforce is changing daily and the table is
greater than 25,000 records, then use the 'Subset' option of sf_refres h on
runs made during the day. With this option, you can avoid time consuming
replicates of large tables during the day while still keeping a subset of the
columns up-to-date. A sf_replicate run that night will pick up the schema
changes and the new data.

Our recommendation is to run sf_replicate either nightly or weekly. In the
salesforce api, changes in formula fields will NOT be flagged as changed
records. Therefore if you have formula fields on objects and only their value
changes, the record will not be picked up by sf_refresh. This is because the
salesforce api does not update the last modified date of that record for a
formula field change. We therefore recommend that you run a sf_replicate
on a nightly or weekly basis for your tables in order to pi ckup these
modifications.

Large binary blobs may not be downloaded if their size is greater than
MaxBase64Size in the DBAmp registry. See MaxBase64Size in the DBAmp
Registry Settings chapter.

32

Skipping Tables in SF_ReplicateAll and SF_RefreshAll

Use the TablesToSkip table to skip the tables in the SF_ReplicateAll and
SF_RefreshAll stored proceduresthat are not needed locally.

For example, to skip the AcceptedEventRelationtable from being replicated
or refreshed locally and provide a reason for doing so, run the following
command in the Salesforce Backups database:

Insert Into TablesToSkip (TableName, SkipReason) Values
(6AcceptedEvent Relationé, ONot needed |l ocally

In addition to specifying actual table names, wildcard names can also be
specified. For example, %Share or Solution%. %Share would skip every
table name that ends with Share. Solution% would skip every table that

starts with Solution. An example is provided below:

Il nsert I nto Tabl esToSkip (Tabl eName, Ski pReas
all sharet abl es d)

Note: The TablesToSkip table is maintained by the user of DBAmp and is
not overwritten when DBAmp is upgraded or the Create DBAmp SPROCS are
executed to update the DBAmp stored procedures.

33

Chapter 4: Bulk Insert, Upsert, Delete and
Update into Salesforce

Normal SQL Insert, Delete and Update statements are processed one at a
time and are not sent in batches to Salesforce.com. To perform bulk
operations use the SF_BulkOps stored procedure.

Conceptually, the SF_BulkOps proc takes as input a local SQL Server table
you create that is designated as the "input" table. The input table name
must begin with a valid Salesforce object name followed by an underscore
and suffix. For example, Account_Load and Account_FromWeb are
valid input table names. XXX_Load is not a valid input table name (XXX is
not a valid Salesforce.com object).

Do not allow other applications to write to the input table while
sf_bulkops is running.

Checking the Column Names of the Input Table

The input table must contain a column named Id defined as nchar(18) and
a column named Error defined as nvarchar(255). In addition, the input
table can contain other columns that match the fields of the Salesforce
object.

For example, below is a valid definition of an Account_Load table:

Id nchar(18)
Name nvarchar(80)
Error nvarchar(255)

Note that in this example, the Account_Load table does not contain most of
the fields of the Account object.

How the input table is used depends on the operation requested. When
using the above example table with an Insert operation, the missing fields
are loaded as null values. When using the above example table with an
Update operation, the Name field becomes the only field updated on the
Salesforce side. When using the above example table with a Delete
operation, the Name field is ignored and the objects with the Id value are
deleted.

The SF_BulkOps proc looks at each field of the Salesforce object and tries
to match it to a column name in the input table. One easy way to create a
input table is to copy the definition of a table replicated by the
SF_Replicate proc and add an Error column. Note that columns of the
input table that do not match a field nhame are ignored. In addition,

columns that match a computed fields (like SystemModstamp) are ignored
if they exist in the input table.

34

The SF_BulkOps proc will identify column names of the input table that do
not match with va lid Salesforce.com column names and produce a warning
message in the output. Note that in a properly constructed input table you
may also have other columns in the input table that are for y our own use
and that should be ignored as input to SF_BulkOps . The SF_ColCompare
stored procedure will also compare column names and identify errors
without having to run SF_BulkOps .

You can easily have DBAmp generate a valid local table for any
salesforce.com object by using the SF_Generate stored procedure.
SF_Gener ate will automatically create an empty local table with all the
proper columns of the salesforce.com object needed for that operation. See
the chapter DBAmp Stored Procedure Reference for more information on
SF_Generate and SF_ColCompare .

Using External | ds as Foreign Keys (without bulkapi switch)

You can use external ID fields as a foreign key, allowing you to bulk create,
update, or upsert records in a single step instead of querying a record to
get the ID first.

Note: This feature is not currently avai lable when using the
BulkAPI switch.

To do this, specify the external ID field name along with a colon and the
external ID value. For examp | e , |l etds | ook at bul k i nsert o]
with the following table:

ID LastName Accountld Error
Emerson 0016000000G8ISsAAJ
Harrison SAPXID__c:C01202

I n the first cont act to be created (6Emersonb
Account is specified using a traditional 18 char id of the actual account.

The second contact to be created uses an external id field on the Account
object (SAPXID__c) and tells DBAmp/Salesforce to lookup the needed
salesforce.com Accountld by searching for an account where SAPXID__c is
equal to C01202.

Note that the col umndoes aomehanfed wecsionply prefix d 6
the value with the external id field name and a colon.

You can use external ids as foreign keys when bulk inserting, updating, or
upserting.

35

Using External Ids as Foreign Keys (with bulkapi switch)

You can use external ID fields as a foreign key, allowing you to bulk create,
update, or upsert records in a single step instead of querying a record to
get the ID first.

To do this, modify the column name of the input table and add a period
followed by the external ID field name. For examp | e , |l etdéds | ook at bul
insert of contact records with the following table:

ID LastName Accountld.SAPXID__c| Error
Emerson C01203
Harrison C01202

I n the first contact to be created (6Emersono
Account is specified using the SAP Id of C01203.

Note that when using the bulkapi switch, you do not prefix the
value with a field name. Instead, you add the external id name to
the column name of the table.

Also, you must use the external id value for all rows of the input table.

You can use external ids as foreign keys when bulk inserting, updating, or
upserting.

Understanding the Error Column

For all rows that were successfully processed, sf_bulkops writes the phrase
'Operation Successful" to the Error column. Successfully processed rows
can therefore be selected using the following SQL Select:

Select * from Account_Load where Error like '%Operation Successful%'

Rows that were not successfully processed will contain either a row specific
error or nothing if there was a global failure.

Additional values appear in the Error column when using the BulkAPI
switch. See Error Handling when using the Bulk API later in this
chapter for details.

Bulk Inserting rows into Salesforce

When the operation requested is Insert , the SF_BulkOps reads each row
of the input table, matches the columns to the fields of the Salesforce
object, and attempts to insert the new object into Salesforce. Important
SF_BulkOps attempts to insert all rows of the load table regardless of any
existing values in the Id and Error columns. In other words, the Id and
Error columns are ignored on input when doing an Insert operation.

36

After execution of the SF_BulkOps proc, the Id column of the input table
is overwritten with the Id assigned by Salesforce for each successfully
inserted row. If the row could not be inserted, the Error column contains
the error message for the failure.

Note : See the section Using the Bulk API| with SF_BulkOpsfor important
differences in Error column handling when using the BulkAPI switch.

Bulk Upserting rows into Salesforce

When the operation requested is Upsert, the SF_BulkOps reads each row
of the input table, matches the columns to the fields of the Salesforce
object, and attempts to upsert the new object into Salesforce. You must
specify which field to use as the External Id field in the SF_BulkOps call.
Important : SF_BulkOp s attempts to upsert all rows of the load table
regardless of any existing values in the Id and Error columns. In other
words, the Id and Error columns are ignored on input when doing an

Upsert operation.

After execution of the SF_BulkOps proc, the Id colu mn of the input table
is overwritten with the Id assigned by Salesforce for each successfully
upserted row. If the row could not be upserted, the Error column contains
the error message for the failure.

Note : See the section Using the Bulk API| with SF_BukOps for important
differences in Error column handling when using the BulkAPI switch.

Bulk Updating rows into Salesforce

When the operation requested is Update , the SF_BulkOps reads each row
of the input table, maps the columns to the fields of the Salesforce object,
and attempts to update an object in Salesforce using the Id column of the
input table.

Important : the input table should only contain columns for those fields
that you want to update . If the data in a column is an empty string or
NULL, sf_bulkops will update that field on salesforce.com to be NULL You
may modify this behavior by using the following value for the operation:
Update:lgnoreNulls . The IgnoreNulls option tells sf_bulkops to ignore
null values in columns. However, empty string values will still set the field
on salesforce.com to NULL.

For each row in the input table that failed to update, the Error column will
contain the error message for the failure.

Note : See the section Using the Bulk API| with SF_BulkOpsfor important
differences in Error column handling when using the BulkAPI switch.

Bulk Deleting rows from Salesforce

When the operation requested is Delete , the SF_BulkOps reads each row
of the input table and uses the Id field to delete an object in Salesforce.

37

For each row in the input table that failed to delete, the Error column will
contain the error message for the failure.

Note : See the section Using the Bulk API| with SF_BulkOpsfor important
differences in Error column handling when using the BulkAPI switch.

Bulk UnDeleting rows from Salesforce

When the operation requested is UnDelete , the SF_BulkOps reads each
row of the input table and uses the Id field to undelet e an object in
Salesforce.

You can identify deleted rows in a table with the following query:

Select I d from SALESFORCEéAccou'true’ Quer yAl |l w h

Controlling the batch size |

SF_BulkOps uses the maximum allowed batch size of 200 rows. You may
need to reduce the batch size to accommodate APEX code on the
salesforce.com server. To specify a different batch size, use the
batchsize(xx) option after the operation.

For example, to set the batch size to 50:
Exec SF_Bulkops 'Update: batchsize(50)','Sale sforce','User_Upd'

If you are also using the IgnoreNulls option, then separate the options with
a comma:

Exec sf_bulkops 'Update:lgnoreNulls,batchsize(50)','Salesforce','User_Upd'

How to run the SF_ BulkOps proc

Now you are ready to run the stored procedur e.

Note : The SF_BulkOps stored procedure uses the xp_cmdshell command. If
you are not an SQL Server administrator, you must have the proper
permission to use this command. See the SQL Server documentation under
the topic xp_cmdshell for more information. To quickly test, run the
following sql in Query Analyzer:

Exec master.. xp_cmdshell "dir"

To run the SF_BulkOps stored procedure, use the following commands in
Query Analyzer. Be sure your default database is salesforce backups

Exec SF_BulkOps 'Insert’, 'SALESFORCE, 'Account _Load"'
Or

Exec SF_BulkOps 'Upsert','SALESFORCE','Account_Load', 'ED__c'
(where ED__c is the name of the external id field)

38

Exec SF_BulkOps 'Delete’, 'SALESFORCE, 'Account _Load'
Or
Exec SF_BulkOps 'Update’, 'SALESFORCE, 'Account _Load'

Exec SF_BulkOps 'UnDelete’, 'SALESFORCE, 'Account _Load'

where 'SALESFORCE' is the name you gave your linked server in at
installation and Account_Load is the name of the input table to use.

Similar to the SF_Replicate proc, you can schedule the SF_BulkOps proc
using the SQL Server job agent.

39

How to run the SF_BulkOps proc without using xp_cmdshell

In some SQL Server environments, the use of xp_cmdshell may be
restricted. In this case you can use a CmdExec feature of the SQL job step
to run the un derlying bulkops program directly (i.e. instead of using the
sf_bulkops stored procedure). The name of the exe is DBAmp.exe and it is
located in the DBAmp Program Files directory. Normally the directory is
c:\Program Files DBAmp but DBAmp may installed in a different location.

The DBAmp.exe program takes the following 7 parameters:

1. Operation : Must be either Insert , Delete , Update or Upsert .
This is similar to the first parameter of sf_bulksops. Batchsize and
other options are handled the same way as the sf_bulkops proc.

2. Input Table : The name of the local SQL table containing the data.
3. SQL Server Name : The name of the SQL instance to connect to.

4. SQL Database Name : The name of the database to connect to.
Enclose in double quotes if the name contains a blank.

5. Link Server Name : The name of the DBAmp link server.

6. External Id Colum (Optional): The name of the external Id
column to use when the operation is Upsert. Do not include this
parameter for other operations.

Here is an example of a complete command:

"C:\Program Files\sDBAmp\DBAmp.exe" Update Account_Load BUDDY
"salesforce backup" SALESFORCE

Note that even though the command appears on multiple lines in this
document, the command must be entered as a single line in the job step.
Also notice the use of double quotes around both the program and the
database. This is required because those values contain blanks.

When setting up a job step to call the program directly, you must change
the Type of the job step to: Operating System (CmdExec) . Then enter
your complete command in the Command text box. Again, the command
must be on a single line.

The DBAmp.exe program returns O for a successful completion and -1 if any
rows failed. Ensure that the Process exit code of a successful

command is O (zero). A -1 will be returned for situations where some of
the rows succeeded and some failed. Use the error column of the table to
determine the failed rows. Rows that succeeded do not need to be
resubmitted.

40

Below is a screen shot of a sample job step calling the DBAmp.exe.

Eg]nh Step Properties - Step 1

Sele ! Scrph = Lﬁ Help

20 General
A Advanced

Step name:
|Step 1

Type:
IDperating system [CrdE xec) j

Run as:
ISQL Server Agent Service Account

-

Process egit code of a successhul command IU—
Command “C\Program Files\DBAmpHD BArp sxe” Updste: Accourt_Load| BUDDY “sslesforce backup’ SALESFORCE =
Open...
Select All
Copy
Paste

Server
BUDDY

Connection:

BUDD s dmiristrator L
K| 3|

2F View connection properties

j/ Tip: Enclose command names that contain spaces in quotation marks. For example: "command name™ <argumentss.

ezt | Frevious |

Your command may be different depending on the install directory.

Understanding SF_Bulkops failures (Web Services API)

Note : See the section Using the Bulk API| with SF_BulkOpsfor important
differences in failure handling when using th e BulkAPI switch.

When individual rows of the input table fail to complete the operation,
sf_bulkops writes the error message back to the Error column of that row
and continues processing the next row. Thus, in a batch of 200 rows it is
possible that 175 rows were successful and 25 rows failed.

The sf_bulkops stored procedure outputs an error message in the log
indicating the sf_bulkops failed when 1 or more rows failed. The correct
interpretation of this error message is that at least 1 row of the inpu t table
contained an error. Rows that have a blank error message were still
successful. In addition, sf_bulkops outputs messages indicating the total
number of rows processed the number of rows that failed and the number
of rows that succeeded.

If sf_bulkops is run in a job step, then the job step will fail if one or more
rows contain an error. Again, the rows that contain a blank error message
were still successful; the failure is thrown to indicate to the operator that at
least one row failed.

41

Using the Bulk API with SF_BulkOps

There are two different API's available from salesforce.com that
applications can use to push data : the Web Services API or the Bulk API.
You can use either APl with SF_BulkOps with the Web Services API being
the default.

The Web Services APl is synchronous, meaning that for every 200 rows that
are sent to salesforce, an immediate response is sent indicating the success
or failure of those 200 rows. SF_BulkOps has traditionally used the Web
Services API. The disadvantage ofthis API is that the maximum number of
rows that can be sent to salesforce at a time is 200. So if the input table to
SF_BulkOps contains 1000 rows, there will be at least 5 API calls to send
the data to the salesforce.com server.

The Bulk API is asynchionous, meaning that rows sent to salesforce.com
are queued as a job. The job is executed at some time in the future. The
application must enquire about the status of the job at a later time to
retrieve the success or failure of the rows sent. The advanta ge of the Bulk
APl is that up to 10,000 rows can be sent in a single request or API call. An
input table of 5000 rows would require a single API call to send the data,
along with API calls to retrieve the status at some point in the future.

By default, SF_BulkOps uses the Web Services API. To use the Bulk API,
add the BulkAPI switch to the operation parameter of the SF_BulkOps call:

Exec SF_BulkOps 'Insert:bulkapi’, 'SALESFORCE, 'Account _Load’

Because the Bulk API is asynchronous, the error column is populated with a
tracking token indicating the job and batch id for that row along with the
current status. For example, the following Error value indicates that this

row has been submitted to salesforce.com but the result is currently
unknown:

BulkAPI:Insert:750600000004DbhAAE:751600000004FJaAAM: 1Submitted

After the job completes on salesforce, SF_BulkOps populates the Error
column with the success or failure of the operation on that row . For
successfully processedrows, then the Error is changed to indicate a
successful operation:

BulkAPI:Insert:750600000004DbhAAE:751600000004FJaAAM:2:Operation
Successful.

You can use this to remove successfully processed rows from the table:

Delete Account_Load where Error like '%Operation Successful%'

Any rows remaining either have not been processed yet or have failed to process.
The error message associated with the failure is written to the Error value:

42

BulkAPI:Insert:750600000004DbhAAE:751600000004FJaAAM: Error:
INVALID CROSS REFERENCE ID

DBAmp will poll salesforce every 1 minute until the job completes on
salesforce. Then the final success or error message will be written to the
Error column.

I f you prefer not to have DBAampd pfodrlig egtodr) t he
then add the phrase (ns) after the bulkapi option: Insert:bulkapi(ns)

Putting this all together, the workflow for using SF_BulkOps with the Bulk
API is:

1. Call SF_Bulkops to submit a job to salesforce to process the data
and wait for the job to complete. This command will not return until
the job completes on salesforce.com. It will poll salesforce every 1
minute to determine if the job has completed.

Exec SF_BulkOps 'l nsert:bulkapi ', 'SALESFORCE','Account_Load’

2. Remove the successful recordsfrom the table with the following
command:

Delete Account_Load
where Error like '%Operation Successful%'

Examine the remaining rows in the table and determine the failure using

Controlling the batch size with the Bulk API

The maximum allowed batch size when using the Bulk API is 10,000 rows.
By default, the Bulk APl uses a batch size of 5000 rows. You may need to
reduce the batch size to accommodate APEX code on the salesforce.com
server. To specify a different batch size, use the batchsize(xx) option af ter
the operation.

For example, to set the batch size to 2500:

Exec SF_Bulkops 'Update:bulkapi,batchsize(2500)','Salesforce’,'User_Upd'

Understanding a Sort Column when using the Bulk API

For maximum performance when using the bulkapi option, the load tabl e
should have also have a Sort column. Here is a quick way you can add a
Sort column to your load table. Assume that the load table is named
Account_upd1l:

Alter table Account_updl
Add [Sort] int identity (1,1)

This adds a Sort column to the table that is a consecutive integer number.

Having this column will dramatically improve the run time for large
(>50,000 rows) operations.

43

In addition, the sort column can be used to reduce locking issues on
salesforce. Salesforce recommends ordering a detail load table by the
master record id to improve locking (See
https://developer.salesforce.com/page/Loading_Large_Data_Sets_with_the
Force.com_Bulk_API).

Supposeyou are uploading Contact records using a load table named
Contact_upd1. In this case, you could create a Sort column follows :

Alter table Contact _updl
Add [Sort] int identity (1,1)

Then insert the source data into the Contact_upd1 table in Accountld order.

SF_Bulkops will send the records to salesforce in Accountld order to reduce
locking when inserting the contacts.

Using the HardDelete operation with the Bulk API

When using the Bulk API, there is an additional operation available called
HardDelete. With the HardDelete operation, the deleted records are not
stored in the Recycle Bin. Instead, they become immediately available for
deletion. The administrative permission for this operation, Bulk API Hard
Delete, is disabled by default and must be enabled by an administrator. A
Salesforce user license is required for hard delete.

Exec SF_Bulkops ' HardDelete :bulkapi','Salesforce’,'Account_Delete’

Controlling Concurrency Mode with the Bulk API

By default, the Bulk APl uses a concurrency mode of Serial. This guarantees
that batches are processed one at a time.

You can request processing in parallel using the parallel option but this
option may cause locking issues on the salesforce.com server. When this is
severe, the job may fail. If you're experiencing this issue, submit the job
with serial concurrency mode.

To use parallel concurrency mode (instead of the default serial mode) :

Exec SF_Bulkops 'Update: bulkapi, parallel ','Salesforce’,'User_Upd’

Using Optional SOAP Headers

The salesforce api allow you to pass additional SOAP Headers that alter the
behavior of the sf_bulkops operation. The SOAP Headers are described in
detail in the salesforce.com api documentation:
http://www.salesforce.com/us/developer/docs/api/Content/soap_headers.htm

The headers are specified in the form of 3 values separated by commas.
The first value is the header name, the next value is the section name and
the last value is the value for the section. The entire parameter is enclosed

44

https://developer.salesforce.com/page/Loading_Large_Data_Sets_with_the_Force.com_Bulk_API
https://developer.salesforce.com/page/Loading_Large_Data_Sets_with_the_Force.com_Bulk_API
http://www.salesforce.com/us/developer/docs/api/Content/soap_headers.htm

in quotes. The salesforce.com api is case sensitive with respect to these
values; use the exact token given in the salesforce.com documentation.

For example, to use the default assignment rule for these inserted Leads
you would add the following SOAP Header parameter:

execsf_bulkops'Insert''SALESFORCEead Test,'AssignmentRuleHeader,useDefaultRule,true’

The DBAmp Registrysettings can also be used to add SOAP headers. The

di fference is the SOAP header parameter on th
ti meodo use. The DBAmp Registry settings apply
operations of DBAmp. Therefore, using the SOAP header parameterallows a

finer control over the header usage.

Here are some other examples of SOAP headers:
Trigger auteresponse rules for leads and casésmailHeader,triggerAutoResponseEmail,true’
Changes made are not tracked in feetd3isableFeedTrackingHeader,didaFeedTracking,true’

Note: SOAP Headers cannot be used with the bulkapi switch of sf_bulkops.

Converting Leads with SF_Bulkops

SF_BulkOps can be used to convert lead records to
accounts/contacts/opportunities.

The first step is to create a table to hold the information needed for the
conversion. At minimum the table needs to have the following columns:

CREATETABLE [dbo] . [LeadConvert] (
[LeadId] [nchar] (18) NULL,
[convertedStatus] [nvarchar] (255) NULL,
[Error] [nvarchar] (512) NULL,
[Accountld] [nc har] (18) NULL,
[Opportunityld] [nchar] (18) NULL,
[Contactld] [nchar] (18) NULL

) ON [PRIMARY]

Additional columns listed below may be added to the table if the
functionality of the column is needed.

INETIE] Type

accountld nchar(18) ID of the Account into which the lead will be
NULL merged. Required only when updating an existing
account, including person accounts. If no
accountlD column is specified, then the API
creates a new account.

DBAmp will populate this column with the ID of the
newly created Account.

45

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_objects_account.htm#topic-title

INETLE] Type

contactld nchar(18) ID of the Contact into which the lead will be
NULL merged (this contact must be associated with the
specified accountld, and an accountld must be
specified). Required only when updating an
existing contact. Important

If you are converting a lead into a person account,
do not specify the contactld or an error will result.
Specify only the accountld of the person account.

If no contactlD s specified, then the API
creates a new contact that is implicitly associated
with the Account.

DBAmp will populate this column with the ID of the
newly created Contact.

convertedStatus nvarchar(255) Valid LeadStatus value for a converted lead.
NULL Required. To obtain the list of possible values, you
must query the LeadStatus object. For example:

Select Id, MasterLabel
from SALESFORCE... LeadStatus
where IsConverted=true

doNotCreateOpportunity varchar(5) Specifies whether to create an Opportunity during
lead conversion (false , the default) or not

NULL (true). Set this flag to true only if you do not
want to create an opportunity from the lead. An
opportunity is created by default.

leadld nchar(18) ID of the Lead to convert. Required.
NULL

opportunityld nchar(18) DBAmp populates the field with the Id of the newly
NULL created Opportunity

opportunityName nvarchar(80) Name of the opportunity to create. If this column is

NULL not included, then this value defaults to the
company name of the lead.

overwriteLeadSource varchar(5) Specifies whether to overwrite the LeadSource

NULL field on the target Contact object with the contents
of the LeadSource field in the source Lead object
(true), or not (false , the default). To set this
field to true , you must specify a contactld for the
target contact.

ownerld nchar(18) Specifies the ID of the person to own any newly
NULL created account, contact, and opportunity. If the

client application does not specify this value, then
the owner of the new object will be the owner of
the lead.

46

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_objects_contact.htm#topic-title
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_guidelines_personaccounts.htm#topic-title
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_objects_account.htm#topic-title
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_objects_opportunity.htm#topic-title
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_objects_lead.htm#topic-title
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_objects_contact.htm#topic-title
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_objects_lead.htm#topic-title

INETLE] Type

sendNotificationEmail varchar(5) Specifies whether to send a notification email to
NULL the owner specified in the ownerld (true) or not
(false , the default).

Use the following command to convert leads:
Exec SF_BulkOps 'ConvertLead’, 'SALESFORCE, 'LeadConvert’

Be sure to examine the error column after running the command to look for
possible errors that may have occurred.

Using IgnoreFailures Option with SF_BulkOps

Without this option, if a BulkOps job runs and one record fails, it fails the
entire job. Some customers want a certain amount of rec ords to fail without
it failing the entire job. The IgnoreFailures option in SF_BulkOps allows for
this functionality.

With the IgnoreFailures option, a number is specified for the percent of
record failures allowed, without failing the entire job. For ex ample, if 10 is
entered for the IgnoreFailures option, 10 percent of the records in the table
being used for SF_BulkOps are allowed to fail, without failing the entire job.
If less than 10 percent of the records in the table fail, the SF_BulkOps job
is successful. If more than 10 percent of the records in the table fail, the
SF_BulkOps job fails.

An example is laid out below:

In this example, up to 20 percent of the records in the Opportunity_Load
table can fail, without the SF_BulkOps job failing. Use the following
command to allow up to 20 percent of records in the Opportunity_Load
table to fail:

Exec SF_Bul kOps O6lnsert:lgnoreFailures(20)606,
60pportunity Loadé

Note: IgnoreFailures option can be used with the BulkAPI switch of
SF_BulkOps.

47

Chapter 5: Using SSIS with DBAmMp

DBAmp can be used with SSIS to build complex integrations. Within SSIS,
you can use DBAmp in two ways:

- Directly connecting to DBAmp to pull data from salesforce.com

- Connecting to SQL Server and using the link serverto push data to
salesforce.com.

Create a Connection for DBAmp

In order to use DBAmp in any integration project, you must first create a
new OLE DB Connectionthat uses the DBAmp provider .

1.

Right click in the Connection Managers panel and choose New
OLE DB Connectio n. When the Configure OLE DB Connection
Manager dialog, click the New button.

The Connection Manager dialog is displayed. Enter the following
information:

Provider: DBAmp OLE DB Provider

Location: Leave blank to connect to production org. For sandbox
orgs use https://test.salesforce.com

User name: Your salesforce.com user id

Password: Your salesforce.com password. Include the security
token if needed.

Allow saving password: Check this box.

Click the Test Connection button and correct any errors as needed.

Click OK to save the new connection. The new connection should
now appear in the Connection Managers panel.

Optionally, right click on the newly created connection and rename
to a friendlier name.

Using DBAmp as an OLE DB Source

SSIS can connect directly to DBAmp to pull data from salesforce.com. Use
the following steps to create a Data Flow task in SSIS that reads data from
salesforce.com using DBAmp:

1.

While in the Control Flow panel, drag and drop a Data Flow Task
from the Toolbox. Right click on the new Data Flow Task and choose
Edit . The Data Flow panel should now be displayed

From the Toolbox, drag and drop the OLE DB Source item onto the
edit panel. Right click the new OLE DB Source item and choose
Properties .

48

https://test.salesforce.com/

3. Set the AlwaysUseDefaultCodePage property to TRUE. This must
be done for the DBAmp OLE DB Source to work correctly.

4. Now, right click on the OLE DB Source item and choose Edit. Set
the OLE DB Connection Manager to the DBAmp connection
created above.

5. Data Access Mode can be either a Table or View or a SQL
command.

When using a SQL command, rememberthat DBAmp is expecting
SOQL (not SQL). Do not use the Build Query button.

Instead, type your SOQL statement directly into the SQL
Command Text field.

A full description of the SOQL language can be found on the
salesforce.com website at :

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTop
ic=Content/sforce_api_calls_sogl.htm

This OLE DB Source can now be used as the source of the data flow.

Pushing Data to Salesforce.com using SSIS

The most scalable way to push data to salesforce.com is the sf_bulkops
stored procedure. The SF_Bulkops stored procedure is described in detail in
the chapter titled Bulk Insert, Upsert, Delete and Update into

Salesforce .

In SSIS, you can use the Execute SQL Task to call the SF_Bulkops stored
procedure. The connection manager for the task should be a connection to
the SQL Server (NOT the DBAmp OLE DB provider). The SQL Source Type
should be Direct Input and the SQL Statement should be the call to the
SF_BulkOps stored procedure.

49

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql.htm
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql.htm

 Execute SQL Task Editor

Configure the properties required to run SCL statements and stored procedures using the selected connection,

ey

General B General
Parameter Mapping Push changes to SALESFORCE
Result Set Description Execute SQL Task
Expressions & Dptions
TimeCut 1]
CodePage 1252
B Result Set
ResultSet None
E 80L Statement
ConnectionType OLE DB
Conneckion BUDDY.salesforce backup
SCLSourceType Direct input
SQLStatement exec si_bulkops ‘Update’,'Salesforce’, Account_SSISUpdate’
IsQueryStaredProcedure False
BypassPrepare True
Name
Specifies the name of the task,
Browse, ., | Build Query... | Parse Query |

0K|Can|:e|||j3b‘

50

The Execute SQL Task that contains the SF_BulkOps call normally has 2
precedence constraints: 1 for SUCCESS and 1 for FAIL.

1 Truncake Account Update

|_-Iﬂ table

¥

1 Grab Account data Fram

12
|_‘ﬂ SALESFORCE

¥

vl Add 100 to the
|_‘ﬂ AnnualRevenue

]

Push changes to

t% SALESFORCE
T 1

l__% oK t% Fail

You can use the Precedence Constraints to direct flow based on the
SF_BulkOps outcome.SF_Bulkops (and therefore the Execute SQL Task)
fails if any row of the table cannot be processed successfully. If only a
partial number of rows succeed, the FAIL precedence constraint fires. When
this occurs, you can identify the successful rows by using the following
SQL:

Select * from Account_SSISUpdate
wh ere Error like '%Operation Successful%'

51

Chapter 6: Uploading files into_Content,
Documents and Attachments

You can use DBAmpto upload files into salesforce.com as Content,
Documents or Attachments with the SF_Bulkops stored procedure. When
you place a file path in the VersionData or Body column, SF_Bulkops will
use the path to obtain the data needed.

SALESFORCE guidelines for uploading documents in ContentVersion object:

fiTo create a document, create a new version via the ContentVersion object
without setting the ContentDocumentld. This automatically creates a parent
document record. When adding a new version of the document, you must
specify an existing ContentDocumentld which initiates the revision process
for the document. When the latest version i s published, the title, owner, and
publish status fields are updated in the document. 0

To upload Content, use the following steps:

1. Use the SF_Generate stored procedure to generate a table to be
used for the upload. See SF_Generate in the Stored Procedure
reference for more details on SF_Generate.

exec sf_generate 'Insert','"SALESFORCE','ContentVersion_Load'

2. Using SQL, modify the VersionData column type to be a
nvarchar(500) instead of an image type.

Alter table ContentVersion_Load Drop Column VersionData
Alter table ContentVersion_Load Add VersionData nvarchar(500) null
3. Insert rows into ContentVersion_Load with the following values:
1 Title - file name.
1 ContentDocumentld i ID of the document.
9 Origin -The source of the content version. Valid values are:

o Co0 This is a Content document from the user's
personal library. Label is Content. The
FirstPublishLocationld must be the user's ID. If
FirstPublishLocationld is left blank, it defaults to the
user's ID.

0 Ho This is a Chatter file from the user's My Files.
Label is Chatter. The FirstPublishLocationld must be
the user's ID. If FirstPublishLocationld is left blank, it
defaults to the user's ID. Origin can only be set to H
if Chatter is enabled for your organization.

52

This field defaults to C. Label is Content Origin.
1 Ownerld - ID of the owner of this document.
1 Description - (optional) file or link descripti on.

1 VersionData - complete file path on the local drive of the
computer where DBAmp is installed. For example:
c:\serialnumber.txt

1 PathOnClient- complete file path on the local drive of the
computer where DBAmp is installed.

1 ContentUrl - URL (for uploading links only, leave blank for
files).

1 FirstPublishLocationld - workspace ID.

1 RecordTypeld - content type ID. If you publish to a
workspace that has restricted content types, you must
specify RecordTypeld.

4. Upload the table to salesforce.com with SF_Bulkops. SF_Bulkops will
automatically read the file using the location found in the
VersionData column and pass the contents to salesforce as the file.

Note: You cannot use the bulkapi switch when uploading content
with sf_bulkops.

exec sf_bulkops 'Insert','SALESFORCE','ContentVersion_Load'

5. Check the Error column of ContentVersion_Load table for any error
messages that may have occurred during the upload.

To upload Attachments, use the following steps:

1. Use the SF_Generate stored procedure to generate a table to be
used for the upload. See SF_Generate in the Stored Procedure
reference for more details on SF_Generate.

exec sf_generate ‘Insert','SALESFORCE', Attachment _Load’

2. Using SQL, modify the Body column type to be a nvarchar(500)
instead of an image type.

Alter table Attachment _Load Drop Column Body
Alter table Attachment _Load Add Body nvarchar(500) null
3. Insert rows into Attachment_Load with the following values:
1 Name - file name.

1 Description - (optional) file description.

53

54

Body- complete file path on the local drive of the computer
where DBAmp is installed. For example: c:\serialnumber.txt

IsPrivate - false/true

Ownerld - (optional) file owner, defaults to the user
uploading the file.

Parentld i ID of the parent object of the attachment. The
following objects are supported as parents of attachments:

Account, Asset, Campaign, Case, Contact, Contract, Custom
objects, EmailMessage, EmailTemplate, Event, Lead,
Opportunity, Product2, Solution, Task.

Upload the table to salesforce.com with SF_Bulkops. SF_Bulkops will
automatically read the file using the location found in the Body
column and pass the contents to salesforce as the file.

Note: You cannot use the bulkapi switch when uploading
attachments with sf_bulkops.

exec s f_bulkops 'Insert','SALESFORCE",’ Attachment _Load'

Check the Error column of Attachment_Load table for any error
messages that may have occurred during the upload.

55

Chapter 7: Creating Database Diagrams and Keys

Using DBAmpand a database diagramming tool, you can construct
Database Diagrams of Salesforce.com tables like the example below.
DBAmp works with all major ERD and database diagramming tools.

— A
EmeliEnncirgey
Emiloymetiumber
Fax ¥

‘T

i
Contract
| | Fopurild ~
Adhaiecld
| amamazen
] Bilingaty
| BlingCourtry
BELET ==
BELES
BEEEDS
| g Led pccount Opportunity
— DS || pommerme A
1 A" _|radmEe o e
ArrisRamnis Campalgnls
[| ey | cesaen
—H || ameouriny | covracgnenan_c
——LH : BllingPogziCoce E — : Craate
BllingSRaie Craatelats
4 BE ngSest B Deizbast_¢
Soashone__¢ Deallosfezon_o
mgdh : Corporzimlesdnaise : Descripion
| masmeiame | erporzielesnaliiar _|meemcirane 7
H Bz CreaiecByld Foemcagiamgory
e
B b
B ko
BEEEE
[| oesripsen
BEE
HES
e
|| Bestiams

56

Creating a Primary Key

Do not use SF_CreateKeys if all you want is a permanent Primary Key on
the ID field of the tables. Instead, the SF_Replicate stored procedure will
automatically create the primary key on the ID field of every table it
replicates.

Creating Foreign Keys

The table can have many foreign keys. The foreign keys created by
SF_CreateKeys are disabled and will not be enforced by SQL Server. This
is because salesforce.com allows a field of a table to reference multiple
other tables. For example, the field Parentld on the Attachment table can
refer to Id field of six or more other tables. It would not be possible for
SQL Server to enable this as a foreign key.

Creating a Database D iagram

Creating database diagrams is a 4 step process:

1. Replicate the needed tables using SF_Replicate . This creates a
local table with a primary key.

2. Usethe DBAmp stored procedure SF_CreateKeys to add the
foreign keys to the local replicated tables.

3. Use the ERD tool of choice (like SQL Enterprise Manager's Data
Diagrams) to build a diagram from the tables and keys.

4. Drop the foreign keys using the stored procedure SF_DropKeys .
Failure to remove the foreign keys from the table causes problems
with the later replication of the table.

There are two DBAmp stored procedures for key creation and deletion.
They are SF_DropKeys , which drops all foreign keys on the local tables in
the database and SF_CreateKeys , which creates the foreign key
constraints on the same tables. These procedures work only on the local
tables that appear to be replicated copies of Salesforce.com tables

Note that SF_CreateKeys will only create foreign keys for existing local
tables; the procedure does not create the local table itself. Therefore, you
must replicate down either all the salesforce.com tables (using
SF_ReplicateAll) or a subset of salesforce.com tables (using
SF_Replicate) prior to running SF_CreateKeys .

In addition, the foreign keys should not exist when running SF_Replicate or
SF_ReplicateAll.Therefore, we recommend that you only use
SF_CreateKeys and SF_DropKeys when you need to build a

database diagram. The procedure to build the diagram is:

1. Create the database to hold the local replicated tables.

2. Run SF_ReplicateAll to make a complete local set of replicated
tables.

57

Run SF_CreateKeys to add the foreign keys to the local tables.

Create the database diagrams as needed using the ERD tool of your
choice or SQL Management Studia

Run SF_DropKeys to drop the foreign keys.

58

Chapter 8: Using Excel with Views to Linked
Server Tables

When accessing the linked server from Excel or other programs, you are
really accessing SQL server and then using SQL Server to access the linked
tables. To avoid four part object names in this scenario, use the following
scripts to create views of the linked server tables.

Create Views of the SALESFORCE linked server tables

The SF_CreateViews procedure is a stored proc that can be run every night
and it will automatically create views for those that don't exist and
drop/recreate the views that do exist.

To use this stored procedure in Query Analyzer:

1. Create a new SQL Server database to contain the view definitions.
Name this new database SFViews . Navigate to or create a
database that will contain the views.

Open the 'Create Views.sql' file located in the DBAmp installation directory.
Ensure that you are using the proper database (check the QA Toolbar),
then press F5 to add the SF_CreateViews stored procedure to the database.

2. As often as needed, run the following to create the views:
exec SF_CreateViews 'SALESFORCE'
where 'SALESFORCE' is the name of your linked server. The stored
procedure will create view definitions in the new database for each

of the salesforce.com objects. The view name will be the object
name with _View appended (Account_View).

59

Using Excel

With the views created, you can now easily import data into Excel
spreadsheets and pivot tabl es. Herebds how to

1. To import data to a spreadsheet, choose New Dat abase Queryé
from the Data 1 Import External Data menu.

E3 Microsoft Excel - Book 1 9(=)[E3
2] Fle Edit View Insert Format Tools | Data | Window Help Type aquestion forhelp [o @ %
ﬂ! : Arial -1 | B I |i3]| PivotTable and PivotChart Report. .. Eg = é - &
: galesforce.com ~ ! | Import External Data 3 | A | ImportData... %
Al - A ¥8 Refresh Data | & New Database Query... |)
A B | C | D Export to MapPaint 3 Edit Query... '5
; Link to MapPaint %8l Data Range Properties. b
ER g | ¥ o
Ex |
= a QAIF

To import data to a pivot table, choose Pivot Table and Pivot
Chart Report from the menu and click External Data on the
dialog. Then click the Get Data button.

60

2. If you have already created a data source for Salesforce.com, skip
to step 6. If not, check Use the Query Wizard , choose <New
Data Source> and click OK.

Choose Data Source

T e

Databazes l E!ueries] OLAP Cubes
<Mew Data Saurces

dBASE Files® Cancel i
Excel Files®

LocalServer® Browse. ..

M5 Access Databaze®

Salezforce 2005 Optiohs. ..
zalesforce®

Salezforce. com

@ v Llze the Querny Wizard to create/edit quernies

3. Name the new data source, select the SQL Server driver and click
Connect .

Create New Data Source

YWhat name do you want to give your data source?

1. |Salesfurce Data

Select a driver far the tupe of database you want to acceszs:

i
i 2 |SI]LServer j i

Click. Connect and enter any information requested by the driver:

5. [Ermee |
4. | =]

- 5

@ | Canizel |

61

Enter the required connection information for your SQL Server. Click
the Options button and select the SFViews database (the database
created earlier in the chapter).

S0L Server Login le
Server: |TDSHIBA"-.SGLEXPHES ﬂ oK
| v LUse Trusted Connection Cancel I
| Help
| [
Oiptions
-
|
|
Database: =
Language: | (Default) j
1 | Application Name: ||"-"|i|:n:-5|:|ﬂ Office 2003 |
WorkStation 1D: TOSHIBA

62

5. Do not select a default table. Click OK.

Create New Data Source

YWhat name do you want to give your data source?

1. |Salesfu:uru:e Data

Select a driver far the tupe of database vou want to access:
| 2 |50L Native Client |

Click. Connect and enter any information requested by the driver:

i 2 Connect... SPiews

Select a default table for your data source [optional]:
. [| |

[Save my uzer 1D and password in the data source definition

@ Q. | Canizel |

6. Select the data source you created in the previous steps and click
OK.

Choose Data Source | |

X

Databazes l Dueries] OLAR Eul:ues] oK
<Mew Data Source:

dBASE Files” Cancel
E el Files®

LocalServer Browse. .

M5 Access Databaze®
Optians. ..

S alesforce Data
zalesforce®

Delete

Flr

@ v Usze the Quen Wizard to creatededit quenes [

63

7. When the Query Wizard i Choose Columns dialog appears, click
Cancel . Click Yes on the next dialog to continue editing the query
in Microsoft Query.

Query Wizard - Choose Columns

YWwhat columnzg of data do you want to include in paur queny?

Ayailable tables and column: Colummg in pour quen:

”~
Account_Deleted View =
Ancount_iew
AccountContactBole_View
AccountShare_Wiew

Fl" i"'l'ill [Lanlalo

Ll

|1

|

|

Presview of data in selected column:

@ Options... | Cancel |

8. Finally, use Microsoft Query to build a query from the
Salesforce.com views by dragging and dropping columns from the
views. Consult the Microsoft Query help for information on how to
join tables. Also, review the information on joining Salesforce.com
tables in Chapter 2.

64

Chapter 9: DBAmp Stored Procedure Reference

65

SF_BulkOps

Usage

SF_BulkOps takes as input a local SQL Server table you create that is
designated as the "input” table. The input table name must begin with a
valid Salesforce object name followed by an underscore and suffix. For
example, Account_Load and Account FromWeb are valid input table
names. XXX_Load is not a valid input table name (XXX is not a valid
Salesforce.com object).

The input table must contain a column named Id defined as nchar(18) and
a column named Error defined as nvarchar(255). In addition, the input
table can contain other columns that match the fields of the Salesforce
object. SF_BulkOps produceswarning messages for all columns that do not
match a field in the salesforce.com object. Non-matching columns are not
considered an error because you may want to have column data in the table
for reference but that should be intentionally ignored.

Do not allow other applications to write to the input table while
sf_bulkops is running.

NOTE: There are two different API's available from salesforce.com that
applications can use to push data : the Web Services API or the Bulk API.
You can use either APl with SF_BulkOps with the Web Services API being
the default.

The Web Services APl is synchronous, meaning that for every 200 rows that
are sent to salesforce, an immediate response is sent indicating the success
or failure of those 200 rows. SF_BulkOps has traditionally used the Web
Services API. The disadvantage of this API is that the maximum number of
rows that can be sent to salesforce at a time is 200. So if the input table to
SF_BulkOps contains 1000 rows, there will be at least 5 API calls to send
the data to the salesforce.com server.

The Bulk API is asynchronous, meaning that rows sent to salesforce.com
are queued as a job. The job is executed at some time in the future. The
advantage of the Bulk API is that up to 10,000 rows can be sent in a single
request or API call. An input table of 5000 rows would require a single API
call to send the data, along with API calls to retrieve the status at some
point in the future.

By default, SF_BulkOps uses the Web Services API.

The SF_Generate stored procedure can be used to quickly build input
tables for SF_BulkOps .

The SF_ColCompare st ored procedure can be used to co
tables against the salesforce.com object to ensure correct column names.

SF_BulkOps can perform one of thirteen operations:

66

10.

11.

Insert 7 When the operation requested is Insert , the SF_BulkOps
reads each row of the input table, matches the columns to the fields
of the Salesforce object, and attempts to insert the new object into
Salesforce. Important : SF_BulkOps attempts to insert all rows of
the load table regardless of any existing values in the Id and Error
columns.

Insert:BulkAPl T Insert rows from the table using the Bulk API
instead of the Web Services API.

Upsert - When the operation requested is Upsert, the
SF_BulkOps reads each row of the input table, matches the
columns to the fields of the Salesforce object, and attempts to
upsert the new object into Salesforce using the specified external id
field. Important : SF_BulkOps attempts to upsert all rows of the
load table regardless of any existing values in the Id and Error
columns.

Upsert :BulkAPIl T Upsert row using the Bulk API instead of the
Web Services API.

Update 7 When the operation requested is Update , the
SF_BulkOps reads each row of the input table, map s the columns
to the fields of the Salesforce object, and attempts to update an
object in Salesforce using the Id column of the input table.

Important: the input table should only contain columns for those
fields that you want to update. If the data in a column is an empty
string or NULL, sf_bulkops will update that field on salesforce.com
to be NULL. You may modify this behavior by using the following
value for the operation: Update:lgnoreNulls . The IgnoreNulls
option tells sf_bulkops to ignore null values in columns. However,
empty string values will still set the field on salesforce.com to NULL.

Update :BulkAPI 1 Update salesforce objects using the Bulk API
instead of the Web Services API.

Delete - When the operation requested is Delete , the SF_BulkOps
reads each row of the input table and uses the Id field to delete an
object in Salesforce.

Delete :BulkAPI 1 Delete objects in salesforce using the Bulk API
instead of the Web Services API.

HardDelete :BulkAPl 1 Delete objects in salesforce using the Bulk
API. In addition, the deleted records are not stored in the Recycle
Bin.

Status T Populate the Error column with the current job/batch
status. This is used when using BulkAPI operations to determine
the result of the operation.

ConvertLead 1 Converts Lead records. SeeConverting Leads
with SFE_BulkOps in Chapter 4 for more details.

67

12. UnDelete T Use this option to undelete rows from the Recycle bin.
You can identify deleted rows using a query against the _QueryAll
table:

Select Id from SALESFORCE é Account _QueryAIll
where IsDeleted=" True '

13. IgnoreFailures i Use this option to specify the percent of records
in a BulkOps input table to allow to fail, without failing the BulkOps
job.

For each row in the input table that the operation fails , the Error column
will contain the error message for the failure.

Syntax

exec SF_BulkOps 'Insert’, ' linked_server ', ' object ' ,' Optional SoapHdr'
or

exec SF_BulkOps 'Delete’, ' linked_server ', ' object ',' Optional SoapHdr'
Or

exec SF_BulkOps 'Update :BulkAPIl ', ' /inked_server ', ' object ', OptionalSoapHdr
or

exec SF_BulkOps 'Upsert','linked_server’,'object’,’ eid',,” OptionalSoapHdr

where /inked _serveris the name of your linked server , object is the name
of the object, and e/d is the name of the external id field.

The OptionalSoapHdrparameter is optional and may be used to pass
salesforce.com SOAP headers for thisexecution only. See Using Optional
SOAP Headerdater in this section.

Example

The following example bulk inserts rows from the local table named
Account_Load into the Account object at Salesforce.com using the
SALESFORCE linked server.

exec sf_ bulkops 'l nsert’, 'SALESFORCE, 'Account _Load'

Controlling the batch size

SF_BulkOps usesa batch size of 200 rows (Web Services API) or 5,000
(Bulk API). You may need to reduce the batch size to accommodate APEX
code on the salesforce.com server. To specify a different batch size, use
the batchsize(xx) option after the operation.

68

For example, to set the batch size to 50:
Exec SF_Bulkops 'Update: batchsize(50)','Salesforce’,'User_Upd'

If you are also using the IgnoreNulls option, then separate the options with
a comma:

Exec sf_bulkops 'Update:lgnoreNulls,batchsize(50)','Salesforce’,'"User_Upd'

Controlling the Concurrency Mode

If you are using the bulkapi switch, the default concurrency mode is Serial.
To specify parallel concurrency mode instead, use the parallel option:

Exec SF_Bulkops 'Update: bulkapi, parallel ,'Salesforce’,'User_Upd'

Skipping the Status check

I f you prefer not to have DBAmMp pool)l
then add the phrase (ns) after the bulkapi option: ‘Insert:bulkapi(ns)_

Using Optional SOAP Headers

The salesforce api allow you to pass additional SOAP Headers that alter the
behavior of the sf_bulkops operation. The SOAP Headers are described in
detail in the salesforce.com api documentation:
http://www.salesforce.com/us/developer/docs/api/Content/soap_headers.htm

The headers are specified in the form of 3 values separated by commas.
The first value is the header name, the next value is the se ction name and
the last value is the value for the section. The entire parameter is enclosed
in quotes. The salesforce.com api is case sensitive with respect to these
values; use the exact token given in the salesforce.com documentation.

For example, to use the default assignment rule for these inserted Leads
you would add the following SOAP Header parameter:

execsf_bulkops'Insert','SALESFORCEéad Test,'AssignmentRuleHeader,useDefaultRule,true’

The DBAmp Registry settings can also be used to add SOAPheaders. The

di fference is the SOAP header par ameter

ti meo use. The DBAmMp Registry sett.i
operations of DBAmp. Therefore, using the SOAP header parameter allows a
finer control over the head er usage.

Here are some other examples of SOAP headers:
Trigger auteresponse rules for leads and caséEmailHeader,triggerAutoResponseEmail,true’

Changes made are not tracked in feedSisableFeedTrackingHeadeéisableFeedTrackingue'

SOAP Headerscannot be used along with the bulkapi switch.

69

ngs

r

t he

on
app

t
I

h
y

http://www.salesforce.com/us/developer/docs/api/Content/soap_headers.htm

Using lgnoreFailures Option

Used to specify the percent of records in the input table to allow to falil,
without failing the BulkOps job. Use the following command to allow up to
20 percent of the records in the Opportunity_Load to fail, without the
BulkOps job failing:

Exec SF_Bul kOps o6l nsert:lgnoreFailures(20)6,
60pportunity Loadé

Note: IgnoreFailures option can be used with the BulkAPI switch of
SF_BulkOps.

Notes

A full explanation of the SF_BulkOps stored procedure can be found in
Chapter 4: Bulk Insert, Upsert, Delete and Update into Salesforce

When individual rows of the input table fail to complete the operation,
sf_bulkops writes the error message back to the Error column of that row
and continues processing the next row. Thus, in a batch of 200 rows it is
possible that 175 rows were successful and 25 rows failed.

The sf_bulkops stored procedure outputs an error message in the log
indicating the sf_bulkops failed when 1 or more rows failed. The correct
interpretation of this error message is that at least 1 row of the input table
contained an error. In addition, sf_bulkops outputs messages indicating the
total number of rows processed the number of rows th at failed and the
number of rows that succeeded.

For all rows that were successfully processed, sf_bulkops writes the phrase
'Operation Successful” to the Error column. Successfully processed rows
can therefore be selected using the following SQL Select:

Select * from Account_Load where Error like '%Operation Successful%'
This technique works for the bulkapi switch as well.

If sf_bulkops is run in a job step, then the job step will fail if one or more
rows contain an error. Again, the rows that contain a b lank error message
were still successful; the failure is thrown to indicate to the operator that at
least one row failed.

70

SF_BulkSOQL

Usage

SF_BulkSOQL creates and populates a local SQL table with the results of a
SOQLquery. SF_BulkSOQL uses the salesforce Bulk API. Therefore,
the SOQL query must be validto use with the Bulk API. For more
information on SOQL that is valid with the Bulk API, visit this link:
https://developer.salesforce.com/docs/atlas.en -
us.api_asynch.meta/api_asynch/asynch_api_using_bulk_query.htm

SF_BulkSOQLfunctionality usestwo SQL Servertables: a Results t able
and a SOQL table . The following goes into detail on each table:

1. Results Table

1 Holds the results of a SOQL statementin a SQL Server table
locally

1 Table is created or recreated when the SF_BulkSOQL stored
procedure runs

1 Provided in the 2" parameter of the SF_BulkSOQL stored
procedure

1 The name of the table cannot be the name of a valid
Salesforce object. (AccountsContacts is valid, Contact is not
valid)

1 The name of the table should describe the results of the
SOQL statement(Ex.- A SOQL statement that is bringing
down Accounts and Contacts could be named
AccountsContactg

2. SOQL Table
i Holds the SOQL statement that populates the Results table

1 Must be named: Results table name + an underscore +
i S OQ IBa- A€countsContacts_SOQL)

9 Must be created prior to running the SF_BulkSOQL stored
procedure

1 Must contain one column only, named AiSOQLO def i ned
nvarchar(max). Example:

Create Table AccountsContacts_SOQL
(SOQL nvarchar(max))

1 Must contain one row only

71

https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/asynch_api_using_bulk_query.htm
https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/asynch_api_using_bulk_query.htm

1 Value of one row in the SOQL field must be a valid BulkAPI
SOQL statement

Do not allow other application s to write to the same Results table
or the SOQL table while SF_BulkSOQL is running.

Syntax
exec SF _BulkSOQL ' table _server ', ' table _namée ,' options '

where table_serveris the name of your linked server and table_name is the
name of the Results table. There are several optional options you may
include as well.

Example
The following example creates a local AccountsContacts Resultstable.
1. Create the SOQL table:
Create T able AccountsContacts _SOQL
(SOQL nvarchar(max))
2. Insert the SOQL statement into the SOQL column of the SOQL table:
Insert | nto AccountsContacts _SOQL (SOQL)
Values('Select Account.ld ,Account. Name, * flrom Contact

3. Runthe SF_BulkSOQL stored procedureto populate the Results
table:

exec SF_BulkSOQL 6 SALESFQREEOGount sChontacts

Notice the Results table in the 2" parameter of the SF_BulkSOQL stored
procedure.

Example for Embedded Single Quotes

The following example creates a local Contacts1l Results table where the
one record in the table has an embedded single quote in the last name. For
this exampl e, the | ast name i s O6Brien.

1. Create the SOQL table:

Create T able Contactsl _SOQL

(SOQL nvarchar(max))

2. Insert the SOQL statement into the SOQL column of the SOQL table:
Insert | nto Contactsl _SOQL (SOQL)

Values('Select Id, LastName from Contact WHERE LastName =
"O""Brien"")

72

Note: In the WHE RE clause are all single quotes; there are no
double quotes.

3. Run the SF_BulkSOQL stored procedure to populate the Results
table:

exec SF_BulkSOQL 6 SALESFO®CE&Atactsl1lb6

Notice the Results table in the 2" parameter of the SF_BulkSOQL stored
procedure.

Options

pkchunk: SF _BulkSOQLuses just the salesforce.com BulkAPI by default. If
you would like to use the salesforce.com BulkAPI with the pkchunking
header instead, add the optional pkchunk switch. SF_BulkSOQLwill submit
a bulkapi job using the pkchunking header. This option should only be used
for large tables.

For example, to use pkchunk:
Exec SF_BulkSOQL ' SALESFORCE," Contacts 1','pkchunk’

The default batch size will be 100,000. You can alter this using the
batchsize parameter:

Exec SF_BulkSOQL ' SALESFORCE,
Contacts 1','pkchunk,batchsize(50000)

73

SF_ColCompare

Usage

SF_ColCompare comparesthe column structure of a local input table you
create to the column structure of a Salesforce.com object. The input table name
must begin with a valid Salesforce object name followed by an underscore and
suffix. For example, Account_Load and Account FromWeb are valid input
table names. XXX _Load is not a valid input table name (XXX is not a valid
Salesforcecom object).

SF_ColCompare requires you to specify an operation of either

6l nsertd, 6Updated, 6Upsertdé, or o6Del etebd.

that all columns are valid for that operation.

SF_ColCompare is used to verify that the column names of your input table
match the column names of the Salesforce.com object. That confirms that the
input table will be successfully used by a later SF_BulkOps job.

The output of SF_ColCompare is a single result table containing any errors.

One error that SF_ColCompare detects is column names in the local table that
do not exist in the Salesforce.com object. Column names that appear should be
checked for misspellings or other errors. Note: it is possible to have columns in
the input table that are intended to be ignored by the SF_BulkOps job (for
reference or other purposes). These column names will appear as errors even
though they are ignored when used with SF_BulkOps .

Another error that is detected by SF_ColCompare is column names that exist
in salesforce.com object but are not applicable to the operation. For example,
CreatedDate is a valid column but cannot be inserted or updated and will be
flagged by SF_ColCompare as an error. Note: if these columns remain in the
local table, SF_BulkOps will simply ignore them.

Syntax

execSF_Col Co mp aop&e, /inked_server ',' local table '

where opi s ei ther 6l nsert d, 6 Upidkadt serveri6tbe ser t o6

name of your linked server and /ocal/ _table is the name of the local input
table.

Example

The following example compares the local table named Account_Load to the
Account object at Salesforce.com using the SALESFORCE linked server for
inserting:

exec sf_ colcompare ‘Insert’, 'SALESFORCE, 'Account Load'

74

The

or

SF_CreateKeys

Usage

SF_CreateKeys creates foreign keys for all local replicated tables of a
database. This is useful for creating database diagrams and proving ad-hoc
guery tools with join hints.

You should run SF_DropKeys to ensure that all previous foreign keys are
removed before recreating them with SF_CreateKeys .

For more information on SF_CreateKeys , see the chapter entitled Creating
Database Diagrams and Keys.

Syntax

exec SF_ CreateKeys ' linked_server '
where /inked_serveris the name of your linked server.

Example

The following example creates foreign keys for all local, replicated tables in
the database using the SALESFORCE linked server.

exec sf_ createkeys 'SALESFORCE
Notes

SF_CreateKeys will only create foreign keys for existing local tables; the
procedure does not create the local table itself. Therefore, you must
replicate down either all the salesforce.com tables (using SF_ReplicateAll)
or a subset of salesforce.com tables (using SF_Replicate) prior to running
SF_CreateKeys .

75

SF_DownloadBlobs

Usage

SF_DownloadBlobs downloads the binary content of a salesforce object
(Attachment, Knowledge Article, etc.) into a directory on the SQL Server
machine. SF_DownloadBlobs uses the salesforce Bulk API and
consumes 1 API call per file downloaded . Make sure you have enough
daily API calls in your salesforce org prior to running SF_DownloadBlobs.

SF_DownloadBlobs takes as input a local SQL Server table that is
designated as the "input" table:

Input Tab le

1 Holds the records Ids of a Salesforce object that contains binary
content on salesforce.

1 Input table name prefix must be the name of a valid Salesforce
object. (Ex.- Attachment and Attachment_Test are valid,
AttachmentTest is not valid)

1 Input table must contain the Id field of the Salesforce object, all
other fields are ignored.

1 Input table must contain at least one record

1 The input table can be the table created by SF_Replicateor a table
you create manually.

SF_DownloadBlobsis a stored procedure that creates files in a local
directory with the contents of the binary field(s) of a Salesforce object.

File Name

The file name is based on the following template:
Id_fieldName.File

For example, consisder the following file name:
00P6000000BR8e1EAD_bhodyFile

This file belongs to the attachment with id 00P6000000BR8el1EADand is the
binary contents of the body field.

Syntax

1 ~

exec SF _DownloadBlobs ' table _server ', 6i nput _t'abl e

where table_serveris the name of your linked server and
input_table is the name of a valid input table.

76

Note

The Base64 Maximum Field Size registry setting in the Registry Settings
dialog on the DBAmp Configuration Program must be set to 0.

Example

The following example downloads the binary files(s) of the Attachment
table into in a local directory on the server calledthe iBl ob Di.fTlsct or y 0
example uses SF_Replicate to create the input table.

1. Create the input table using SF_Replicate. Normally, the Body
column of the local Attachment table is null because the
SF_Replicate does not download the binary content.

exec SF_Replicate OSALESFORCEG®G, O0Attachment ¢
2. Create the Blob Directory:

1. Run the DBAmp Configuration Program

2. Navigate to Configuration/Options Dialog

3. Create a Blob Directory using the browse button

3. Run the SF_DownloadBlobs stored procedure to create files
containing the binary field(s) of the Attachment object in the Blob
Directory:

exec SF_DownloadBlobhs 6 SALESFQ®GCE&GC chment 6

After execution, the Blob directory contains the individual Attachment
files.

77

SF _DropKeys

Usage

SF_DropKeys drops all foreign keys for all local replicated tables of a
database. You should run SF_DropKeys to ensure that all previous
foreign keys are removed before recreating them with SF_CreateKeys .

For more information on SF_Drop Keys, see the chapter entitled Creating
Database Diagrams and Keys.

Syntax_

exec SF_ DropKeys ' /inked_server '

where /inked _serveris the name of your linked server.

Example

The following example drops all foreign keys for all local, replicated tables
in the database using the SALESFORCE linked server.

exec sf_ dropkeys 'SALESFORCE
Notes

V SF_DropKeys should be run before SF_Replicate or
SF_Replicate since these procedurs assume that no foreign
keys exist on the current local tables. We recommend that
you only use SF_CreateKeys and SF_DropKeys when you
need to database diagram.

V To create a permanent primary key on the ID field, do not
use SF_CreateKeys. Instead, SF_Repliate will automatically
create the primary key on the Id field .

V SF_DropKeys will drop the keys on all tables in the
salesforce backups database. Do not use SF_DropKeys if you
have created your own, non-salesforce tables with keys in
the database.

78

SF_Generate

Usage

SF_Generate generates a empty local table that can be used as input of
SF_BulkOps for the operation specified. All columns of the salesforce.com
obect that are valid for the operation are included in the table. The input table
name must begin with a valid Salesforce object name followed by an underscore
and suffix. For example, Account_Load and Account_ FromWeb are valid
input table names. XXX_Load is not a valid input table name (XXX is not a
valid Salesforce.com object).

SF_Generate requires you to specify an operation of either
6l nsertd, 6Updated, 6Upsertdé, or o6Del etebd. The
columns that are valid for that operation.

The output of SF_ColCompare is a single empty table and the Create Table
SQL used tocreate it.

Syntax
exec SF_ Ge ner atoed ,dinked server ' ' local table '
where opi s ei ther 6l nsert 6, 6Upypidkact serveriétbep sert 6 or

name of your linked server and /ocal _table is the name of the local input
table.

Example

The following example creates the local table named Account_Load for the
Account object at Salesforce.com using the SALESFORCE linked server.

exec sf_ generate ‘Insert', 'SALESFORCE, 'Account _lLoad'

79

SF_Refresh

Usage

SF_Refresh compares the current, local replicated table with the contents
of the same object at Salesforce.com. Any changes (insert, deletes or
updates) are detected and the local table is updated. Use the SF_Refresh
stored procedure when you need to 'synch’ your local copy with
Salesforce.com.

SF_Refreshcan only be used on objects in salesforce that contain the
necessary timestamp columns for tracking changes.

Syntax

exec sf_refresh ' LS, ' object ', SchemaError ', verify ','bul kapi 6

where LSis the name of your linked server and object is the name of the
object.

The optional parameter SchemakErrorshould be setto 6 Y e i§ yu want
sf_refresh to automatically call sf_replicate if there is a schema change to
the salesforce object.

The optional parameter SchemakErrorcan also be setto6 Subslét 6
there is a schema change to the salesforce object, sf_refresh will try to
determine a valid subset of columns that exist in both the local table and
the table on salesforce.com and will refresh the local table based on that
column subset. 'Subset’ implies that new fields added to the salesforce
object will not be captured by the sf_refresh. In addition, deleted fields will
still remain in the local table. To alter the local table and immediately
delete columns no longer in the salesforce object, set SchemaErrorto
'SubsetDelete’ . To match the schemas back up, either run sf_replicate or
sf_refresh with SchemaError of 'Yes'.

SchemaErrorc an al so Bepa.etWittolR étplaeptidn,

sf_refresh alters the method used for incrementally updating the local

table. Specifically, the Max(SystemModstamp) of the local table is used to

set the start time of the interval (as opposed to the last time sf_refresh

ran). In addition, deleted records are determined by comparing a list of the

l déds |l ocally wit kbhe saledfarce.tomdable (aslapposel too m
using the GetDeleted function).

Note: the 'Subset' and 'SubsetDelete' options are not available for SQL
2000.

If SchemakErroris not provided than sf_refresh prints an error message and
throw an error if the two sch emas do not match.

The optional parameter verify can be setto'no & ‘',warn' or 'fail '.
The default value is 'no'. If the verify parameter is set to warn or fail, the
sf_refresh proc compares the row count of the local table with the row

80

count of the table on salesforce and reports any difference. If the
parameter is set to ' fail ' the sf_refresh proc will fail.

The optional parameter bulkAPI allows sf_refresh to use the bulkAPI
instead of the salesforce web services API. This option should only be used
if you are having problems with the sf_refresh. Using the bulk API will
always be slower but may be the only way to get the rows down from
salesforce.com. Normally, this option should not be specified. To use
the bulkAPI, set this option t o ' bulkapi '

exec sf_refresh 'SALESFORCE', 'Account’ , 'Yes' , 'no' , 'bulkapi'

Example

The following example refreshes the local Account table with the current
data on Salesforce.com using the SALESFORCE linked server.

exec sf_refresh 'SALESFORCE ', 'Account’

Notes

The table must contain a SystemModstamp column in order to be
refreshed. An initial local copy of the table must exist and be less than 30
days old. If the table does not exist, use the sf_replicate procedure to
make a local copy before refreshing the table.

81

SF_Refresh IAD

Usage

SF_RefreshlAD compares the current, local replicated table with the
contents of the same object at Salesforce.com. Any inserted or updated
rows are detected and the local table is updated. Use the SF_RefreshlAD
stored procedure when you need to 'synch’ your local copy (created with
SF_ReplicatelAD) with Salesforce.com.

SF_RefreshlAD adds to the local table all deleted rows that are currently
in the recycle bin. This is an important difference between SF_RefreshlAD
and SF_Refresh . SF_RefreshlAD uses the QueryAll api call.

SF_RefreshlAD can only be used on objects in salesforce that contain the
necessary timestamp columns for tracking changes.

Syntax

exec SF_RefreshlAD ' linked_server .. object_name '' SchemakError

where /inked _serveris the name of your linked server and object name is
the name of the object.

The optional parameter SchemaErrors houl d be set to 6Yes
SF_RefreshlAD to automatically call sf_replicatelAD if there is a schema
change to the salesforce object.

o
—
<

If SchemakErroris not provided than SF_RefreshlAD prints an error
message and throw an error if the two schemas do not match.

Example

The following example refreshes the local Account table with the current
data on Salesforce.com using the SALESFORCE linked server.

exec SF_RefreshIAD 'SALESFORCE , 'Account'

Notes

The table must contain a SystemModstamp column in order to be
refreshed. An initial local copy of the table must exist and be less than 30
days old. If the table does not exist, use the sf replicate |IAD procedure
to make a local copy before refreshing the table.

82

SF_RefreshAll

Usage

SF_Refresh All retrieves a list of the current objects from salesforce and
compares the current, local replicated t able with the contents of the same
object at Salesforce.com. Any changes (insert, deletes or updates) are
detected and the local table is updated. Use the SF_Refresh All stored
procedure when you need to 'synch' all your local tables with
Salesforce.com.

SF_RefreshAll does not refresh all the tables created by SF_Replicateall
because some of the objects in salesforce cannot be refreshed. These
objects do not contain a timestamp field that tracks the datetime of the last
modification. In addition, Chatter Feed objects are also skipped by the
sf_replicateall/sf_refreshall stored procedures because of the excessive api
calls required to download those objects. You can modify the stored
procedures to include the Feed objects if needed.

Syntax

exec sf_refreshall ' linked_server ' ,' SchemaError ', verify
where /inked_serveris the name of your linked server.

The optional parameter SchemaErrors houl d be set to 6Yesd if vy
sf_refreshall to automatically call sf_replicate if there is a schema change

to the salesforce object. SchemakErrorof 'Yes' will also cause DBAmp to

replicate those tables that are not refreshable.

If SchemakErroris not provided than sf_refreshall prints an error message
and throw an error if the two schemas do not match.

The optional parameter verify can be setto'no & ‘'warn' or 'fail '.
The default value is 'no'. If the verify parameter is set to warn or fail, the
sf_refresh proc compares the row count of the local table with the row
count of the table on salesforce and reports any difference. If the
parameter is set to ' fail ' the sf_refresh proc will fail.

Example

The following example refreshes all the local tables with the current data
on Salesforce.com using the SALESFORCE linked server.

exec sf_refresh all ' SALESFORCE'

Skipping Tables

Use the TablesToSkip table to skip the tables in the SF_ReplicateAll and
SF_RefreshAllstored procedures that are not needed locally.

83

For example, to skip the AcceptedEventRelation table from being replicated
or refreshed locally and provide a reason for doing so, run the following
command in the Salesforce Backups database:

Insert Into TablesToSkip (TableName, SkipReason) Values
(6AcceptedEvent Rel ati onbd, O6Not needed Il ocally

In addition to specifying actual table names, wildcard names can also be
specified. For example, %Share or Solution%. %Share would skip every
table name that ends with Share. Solution% would skip every table that
starts with Solution. An example is provided below:

l nsert I nto TablesToSkip (Tabl eName, Ski pReas
al | share tabl esd)

Note: The TablesToSkip table is maintained by the user of DBAmpand is

not overwritten when DBAmp is upgraded or the Create DBAmp SPROCS are

executed to update the DBAmp stored procedures.

Notes

The tables must contain a SystemModstamp column in order to be
refreshed. An initial local copy of the table must exist an d be less than 30
days old. If the tables do not exist, use the sf replicate all procedure to
make a local set of tables before refreshing the tables.

Tables that do not contain a SystemModstamp column are ignored unless
the SchemaErrorp ar a met er These abevtypisadly. the Salesforce.com
tables that end with Status (like CaseStatus)

The SF_RefreshAll stored procedure calls the SF_Refresh procedure for
each valid local table.

There are some tables, like Vote and UserProfileFeed, in Salesforce thatare
not included in sf_refreshall. The salesforce.com API does not allow
selecting all rows from these tables. In addition, Chatter Feed objects are
also skipped by the sf_replicateall/sf_refreshall stored procedures because
of the excessive api calls required to download those objects. You can
modify the stored procedures to include the Feed objects if needed.

84

SF_Replicate

Usage

SF_Replicate creates a local replicated table with the contents of the
same object at Salesforce.com. The name of the local table is the same
name as the Salesforce.com object (i.e. Account). Any schema changes in
the object at Salesforce.com are reflected in the new table.

In addition, SF_Replicate creates a primary key on the Id field of the table.
Syntax
exec sf_r eplicate ' linked_server ', ' object_ name ' ,' options ‘'

where /inked_serveris the name of your linked server and object_name is
the name of the object. There are several optional options you may include
as well.

Example

The following example replicates the local Account table with the current
data on Salesforce.com using the SALESFORCE linked server.

exec sf_ replicate 'SALESFORCE , 'Account'

Options

Batchsize: SF_Replicate uses the maximum allowed batch size of 2000
rows. You may need to reduce the batch size to accommodate APEX code
on the salesforce.com server. To specify a different batch size, use the
batchsize(xx) option after the operation.

For example, to set the batch size to 50:
Exec SF_Replicate 'Salesforce’,'Account’,'batchsize(50)

pkchunk: SF_Replicate uses the salesforce.com web services api by
default. If you would like to use the salesforce.com bulkapi with the
pkchunking header instead, add the optional pkchunk switch. SF_Replicate
will submit a bulkapi job using the pkchunking header and poll every minute
for completion. This option should only be used for large tables.

For example, to use the pkchunk and poll every 1 minutes for comp letion:
Exec SF_Replicate 'Salesforce','Account’,'pkchunk’

The default batch size will be 100,000. You can alter this using the
batchsize parameter:

Exec SF_Replicate 'Salesforce','Account’,'pkchunk,batchsize(50000)'

85

Bulkapi: SF_Replicate uses thesalesforce.com web services api by default.
If you would like to use the salesforce.com bulkapi instead, add the

optional bulkapi switch. SF_Replicate will submit a bulkapi job and poll
every minute for completion. The bulkapi should only be used for larg e
tables.

For example, to use the bulkapi and poll every 1 minutes for completion:

Exec SF_Replicate 'S alesforce','Account’,'bulkapi

NoDrop: SF_Replicate drops the local table by default. If you would like to
use SF_Replicate where it does not drop the local table, add the optional
NoDrop switch.

For example, to use the NoDrop switch with SF_Replicate:
Exec SF_Replicate 'Salesforce’,Account’,'nodrop’
Notes

The SF_Replicate stored procedure creates a full copy and downloads all
the data for that object from Salesforce. If you only want to download the
any changes made since you created the local copy, use the SF_Refresh
stored procedure instead.

A primary index on the Id column will be automatically created when the
table itself is replicated.

By default, DBAmp does not download the values of Base64 fields but
instead sets the value to NULL. This is done for performance reasons. |If

you require the actual values, modify the Base64 Fields Maximum Size using
the DBAmp Configuration Program to some value other than 0.

86

SF_ReplicateKAV

Usage

SF_Replicate KAV creates a local replicated table with the contents of the
knowledge article tables on Salesforce.com. The name of the local table is
thearticl e t_ ybkeaappendethtofthe end (i.e. FAQ_ kav). Any
schema changes in the object at Salesforce.com are reflected in the new
table.

In addition, SF_ReplicateKAV creates a primary key on the Id field of the
table.

Syntax
exec sf_r eplicate KAV ' /inked_server ' ' object_name ‘'

where /inked serveris the name of your linked server and object _name is
the name of the knowledge article object.

Example

The following example replicates the local FAQ knowledge article table with
the current data on Salesforce.com using the SALESFORCE linked server.

exec sf_ replicate KAV 'SALESFORCE ,' FAQ_ kav'
Notes

The SF_Replicate KAV stored procedure creates a full copy and downloads
only the published articles for that object from Salesforce. Each article type

has to be appended by A_ _kavd to successfully

A primary index on the Id column will be automatically created when the
table itself is replicated.

87

SF_ReplicateHistory

Usage

SF_ReplicateHistory is an alternate to SF_Replicate that can only be
used for History tables. Occasionally, the salesforce server is unable to
process a Select * from History table without timing out.
SF_ReplicateHistory can sometimes be used to replicate tre history table by
structuring the SOQL query differently.

sSyntax_
exec sf_r eplicatehistory ' linked_server ', ' object_name ‘'

where /inked _serveris the name of your linked server and object name is
the name of a history object.

Example

The following example replicates the local Account table with the current
data on Salesforce.com using the SALESFORCE linked server.

exec sf_ replicatehistory 'SALESFORCE , 'Account History

88

SF_Replicate All

Usage

SF_Replicate All creates a full backup of your Salesforce.com data as local
replicated tables with the contents of the same object at Salesforce.com.
Any schema changes in the object at Salesforce.com are reflected in the
new table.

Salesforce objects that cannot be queried via the salesforce api with no
where clause (like ActivityHistory) will NOT be included. In addition, Chatter
Feed objects are also skipped by the sf_replicateall/sf_refreshall stored
procedures because of the excessive api calls required to download those
objects. You can modify the stored procedures to include the Feed objects
if needed.

Syntax
exec sf_re plicate all ' /inked _server '

where /inked_serveris the name of your linked server.

Example

The following example replicates all the current data on Salesforce.com
using the SALESFORCE linked server.

exec sf_ replicate all ' SALESFORCE'

Skipping Tables

Use the TablesToSkip table to skip the tables in the SF_ReplicateAll and
SF_RefreshAll stored procedures that arenot needed locally.

For example, to skip the AcceptedEventRelation table from being replicated
or refreshed locally and provide a reason for doing so, run the following
command in the Salesforce Backups database:

Insert Into TablesToSkip (TableName, SkipReason) Values
(6AcceptedEvent Rel ati onbd, O6Not needed Il ocally

In addition to specifying actual table names, wildcard names can also be
specified. For example, %Share or Solution%. %Share would skip every
table name that ends with Share. Solution% would ski p every table that
starts with Solution. An example is provided below:

l nsert I nto TablesToSkip (Tabl eName, Ski pReas
al | share tabl esd)

89

Note: The TablesToSkip table is maintained by the user of DBAmp and is
not overwritten when D BAmp is upgraded or the Create DBAmp SPROCS are
executed to update the DBAmp stored procedures.

Notes

The SF_Replicate All stored procedure calls the SF_Replicate procedure
for each Salesforce.com object

There are some tables, like Vote and UserProfileFeal, in Salesforce that are
not included in sf_ReplicateAll . The salesforce.com API does not allow
selecting all rows from these tables. In addition, Chatter Feed objects are
also skipped by the sf_replicateall/sf_refreshall stored procedures because
of the excessive api calls required to download those objects. You can
modify the stored procedures to include the Feed objects if needed.

By default, DBAmp does not download the values of Base64 fields but
instead sets the value to NULL. This is done for performance reasons. If
you require the actual values, modify the Base64 Fields Maximum Size using
the DBAmp Configuration Program to some value other than 0.

90

SF_ReplicatelAD

Usage

SF_ReplicatelAD creates a local replicated table with the contents of the
same object at Salesforce.com, including any archived or deleted records
from the recycle bin. The name of the local table is the same name as the
Salesforce.com object (i.e. Account). Any schema changes in the object at
Salesforce.com are reflected in the new table.

Syntax_

exec sf_r eplicatelAD ' linked_server ', ' object_name '

where /inked _serveris the name of your linked server and Accountis the
name of the object.

Example

The following example replicates the local Account table with the current
data on Salesforce.com using the SALESFORCE linked server. Any archived
or deleted records will be included in the local table

exec sf_ replicatelAD 'SALESFORCE , 'Account’

Notes

The SF_Replicate IAD stored procedure creates a full copy and downloads
all the data for that object from Salesforce.

Do not try to SF_Refresh tables create with SF_ReplicatelAD . Instead
you can use SF_RefreshlAD .

SF_ReplicatelAD only retrieves the deleted records that ar e currently in
the salesforce recycle bin.

SF_ReplicatelAD will retain the permanently deleted rows from run to run.
Once you begin to use SF_ReplicatelAD for a table, DO NOT USE
sf_replicate on that table. If you run sf_replicate instead of sf_replicatel AD,
you will lose all the permanently deleted rows in the local table.

Options

BulkAPI: SF_ReplicatelAD uses the salesforce.com web services API by
default. If you would like to use the salesforce.com bulkapi instead, add the
optional BulkAPI switch. SF_ReplicatelAD will submit a BulkAPI job and poll
for completion. The BulkAPI should only be used for large tables.

91

For example, to use the BulkAPI and poll for completion:
Exec SF_Replicate IAD 'Salesforce','Account’,'bulkapi'

Batchsize: SF_ReplicatdAD uses the maximum allowed batch size of 2000
rows. You may need to reduce the batch size to accommodate APEX code
on the salesforce.com server. To specify a different batch size, use the
batchsize(xx) option after the operation.

For example, to set the batch size to 50:
Exec SF_Replicate IAD 'Salesforce','Account’,'batchsize(50)'

pkchunk: SF_ReplicatelAD uses the salesforce.com web services API by
default. If you would like to use the salesforce.com BulkAPI with the
pkchunking header instead, add the optional pkchunk switch.
SF_ReplicatelAD will submit a BulkAPI job using the pkchunking header and
poll for completion. This option should only be used for large tables.

For example, to use the pkchunk and poll for completion:
Exec SF_ReplicatelAD 'Salesforce',/Ac count','pkchunk’

The default batch size will be 100,000. You can alter this using the
batchsize parameter:

Exec SF_Replicate IAD 'Salesforce',Account’,'pkchunk,batchsize(50000)

NoDrop: SF_ReplicatdAD drops the local table by default. If you would
like to use SF_Replicatd AD where it does not drop the local table, add the
optional NoDrop switch.

For example, to use the NoDrop switch with SF_Replicate:

Exec SF_Replicate IAD 'Salesforce',/Account’,'nodrop

92

SF_ReplicateLarge

Usage

SF_ReplicateLarge should only be used as a last resort when
SF_Replicate fails due to the number of rows in the table.

This stored procedure cannot be used by Professional Edition
customers due to the lack of access to the sal esforce Bulk API.

SF_ReplicateLarge creates a local replicated table with the contents of
the same object at Salesforce.com using the salesforce bulkapi. The name
of the local table is the same name as the Salesforce.com object (i.e.
Account). Any schema changes in the object at Salesforce.com are reflected
in the new table. In addition, SF_ReplicateLarge creates a primary key
on the Id field of the table.

SF_ReplicateLarge always uses the bulkapi. In addition, it uses a
partitioning strategy based on the Id column to pull rows in multipl e
chunks. Salesforce does not allow binary fields to be queried using the
bulkapi. Therefore, SF_ReplicateLarge cannot be used on tables with
binary columns.

SF_ReplicateLarge requires that the sf user used by the linked server be
an salesforce administrator or have the AView Al

SF_ReplicateLarge will almost also take hours to run for tables with many
million rows.

Syntax
exec sf_r eplicatelarge ' linked_server ', ' object_name '

where /inked _serveris the name of your linked server and object_nameis
the name of the object.

Controlling the batch size

SF_ReplicateLarge uses a batch size of 250,000 .. You may need to reduce
the batch size to accommodate Query Timeouts on the salesforce.com
server. To specify a different batch size, specify a third parameter with the
desired batch size.

For example, to set the batch size to 100000 :

exec sf_ replicatelarge 'SALESFORCE |, 'Account' , 100000

Example

93

Dat ao

pr

The following example replicates the local Account table with the current
data on Salesforce.com usng the SALESFORCE linked server.

exec sf_ replicatelarge 'SALESFORCE , 'Account'

94

SF_MigrateBuilder

Usage

SF_MigrateBuilder creates three stored procedures needed for a
migration. The first stored procedure created by SF_MigrateBuilder is a
Replicate stored procedure used to replicate the objects locally needed in a
migration. This stored procedure is created in your source database and
executed in your source database.

The second stored procedure created by SF_MigrateBuilder is a Load stored
procedure used to migrate the records to the target org. This stored
procedure is created in your target database and executed in your target
database.

The final stored procedure created by SF_MigrateBuilder is a Reset stored
procedure used to reset the target org. This stored procedure is created in
your target database and executed in your target database.

Syntax

exec SF_ MigrateBuilder ' KeyObjectTable ', ' Identifier '
O6Source_LinkedServer 6, O6Target _LinkedServerd,
6Target Databased, 60ptionso

where KeyObjectTableis either a single key object or a list of key objects,
/dentifier is the name you give the created stored procedure,
Source_LinkedServeris the name of the linked server connected to your
source Salesforce org, Target LinkedServeris the name of the linked server
connected to your target Salesforce org, and Target Databaseis the name
of the target database you created. There are several optional options you
may include as well.

Example

The following example creates the three stored procedures named above. A
stored procedure called Acct_Replicate is created in your source database.
Two stored procedures called Acct_Load and Acct_Reset are created in your
target database.

exec SF_ MigrateBuilder ‘Account’, ' Acct' , 6 SOURCE&E®S®ARGETG®G,
6Target DBO

Now you are ready to execute the stored procedures created by
SF_MigrateBuilder to complete a migration.

Replicating the Source org data

95

In your source database, execute the created stored procedure:
Acct_Replicate. This uses the SOURCE linked server to replicate the objects
locally needed for a migration.

exec Acct_Replicate

where Acct Replicateis the name of the replicate stored procedure created
by SF_MigrateBuilder.

Loading the Target org data

In your target database, execute the created stored procedure: Acct_Load.
This migrates all records needed for a migration to your target org.

exec Acct_Load

where Acct Loadis the name of the migrate stored procedure created by
SF_MigrateBuilder.

Resetting the Target org data if needed

In your target database, execute the created stored procedure: Acct_Reset.
This resets only records that were loaded successfully into your target org
for a single migration.

exec Acct_Reset

where Acct_Resetis the name of the reset stored procedure created by
SF_MigrateBuilder.

To reset all records in your target org, use the ResetAll parameter of the
Reset script. In your target database, exe cute the created stored
procedur e: Acct Reset, using the keyword o6all

exec Acct _Reset Oall o

where Acct_Resetis the name of the reset stored procedure created by
SF_MigrateBuilder, and o6all 6 iripttardsset keyword u
all records in the target org

Options

Children(All | Req| None): The Children option determines which child
objects of the key objects are included in the output. The default value is
None (includes no required or non-required children of the key object(s)).

For example, to include only required children of the key object(s), use the
following command:

ExecSF_Mi gr ateBuil der ' Account ', "Acct', O6SOURCE"
6children(req)o

96

Features(A | N): The features option determines which features to
include in the output. Features are special tables that can be included in a
migration. The default value is null (no features included).

| A|: includes Attachment
| N|: includes Note and ContentNote

For example, to include Attachments, Notes, and ContentNotes of the key
object(s), use the following command:

ExecSF_Mi grateBuil der ' Account ', "Acct ', 6 SOURC
6features(AN) O

Note: any combination of A or N can be used for features

Parents(All | Req): The Parent option determines which parent objects of
the key objects are included in the output. The default value is All (includes
all required and non-required parents of the key object(s)).

For example, to include only required parents of the key object(s), us e the
following command:

ExecSF_Mi grateBuil der ' Account ', "Acct ', 6 SOURCE'
6parents(req)éb

Example

Children, features, and parents can be used at the same time for the
options parameter. For example, to include all three options, use the
following command:

Exec SF_Mi grateBuil der ' Account',' MigrateAcct ',
null, oé6children(Req), features(AN), Parents(R
Notes

KeyObjectTable, Identifier, Source_LinkedServer, Target_LinkedServer, and
Target_Database are required parameters for SF_MigrateBuilder. The
Options parameter is optional for SF_MigrateBuilder. The Options parameter
is defaulted to include no children and no features of the key object(s).

See SF_Replicate and SF_BulkOps in chapter 9 for more details on how
these stored procedures work.

97

SF_MigrateGraphML

Usage

SF_MigrateGraphML produces a script in the messages of your source
database that can be copied and pasted into a notepad, then loaded into
yED to view the relationships among the objects in a migration. Provide the
Salesforce object or list of Salesforce objects you want to view in yED in
the KeyObjectTable parameter.

Syntax

exec SF_MigrateGraphML ' KeyObjectTable ',' Identifier '
6Source_LinkedServer 6, 6Target _LinkedServerd,
6Target _Databased, 60ptions?d

where KeyObjectTableis either a single key object or a list of key objects,
/dentifier is the name you give the created stored procedure,
Source_LinkedServers the name of the linked server connected to your
source Salesforce org, 7Target LinkedServeris the name of the linked server
connected to your target Salesforce org, and Target Databaseis the name
of the target database you created. There are several optional options you
may include as well.

Example

The following produces a script in the messages that can be copied and
pasted into a notepad, then loaded into yED. yED provides a way to
visualize the Salesforce objects and their relationships with one another in
a migration. This example is for the Salesforce object Account.

exec SF_ MigrateGraphML 'Account’ ,' MigrateAcc t', O6SOURCES

Options

Children(All | Req| None): The Children option determines which child
objects of the key objects are included in the output. The default value is
None (includes no required or non-required children of the key object(s)).

For example, to include only required children of the key object(s), use the
following command:

ExecSF_Mi gr ateGraphML ' Account ', '"Mi grateAcct ',
6children(req)éo

Features(A | N): The features option determines which features to
include in the output. Features are special tables that can be included in a
migration. The default value is null (no features included).

| A]: includes Attachment

98

| N |: includes Note and ContentNote

For example, to include Attachments, Notes, and ContentNotes of the key
object(s), use the following command:

Exec SF_Mi gr at eGraphML ' Account',' MigrateAcct ,
nul I, 6features(AN) 0

Note: any combination of A or N can be used for features

Parents(All | Req): The Parent option determines which parent objects of
the key objects are included in the output. The default value is All (includes
all required and non-required parents of the key object(s)).

For example, to include only required parents of the key object(s), use the
following command:

Exec SF_ MigrateGraphML ' Account ', "Acct', O6SOURCE" , nul
O6parents(req)éb

Example

Children, features, and parents can be used at the same time for the
options parameter. For example, to include all three options, use the
following command:

Exec SF_MigrateGra ph ML ' Account' , ' MigrateAcct ', 6SOU|
null, o6children(Req), features(AN), Parents (R
Notes

If nothing is provided in the Options parameter , it is defaulted to include no
children, no features, and all parents of the key object(s) .

Only use this stored procedure if you have yED installed on your machine.
To install yED on your machine and to view a guide on yED, see the yED
section of chapter 13.

99

Chapter 10: Using the DBAmp Configuration
Program

To run the DBAmp Configuration Program: from the Start menu, click on
the DBAmp Configuration program located under DBAmp. The following
chapter will outline the Options page and Registry Settings page of the
DBAmp Configuration Program.

Note: You must be logged into the server as a Windows Administrator to
use the DBAmp Configuration Program. Otherwise, your changes will not
be saved to the registry.

Options Page of the DBAmp Configuration Program

To open the Options page of the DBAmp Configuration Program, click the
Configuration menu choice Options .

The Options page is used to configure the DBAmp work directory, the
DBAmp performance package, SQL Server credentials, and proxy
information.

The following screenshot is of the Options page of the DBAmp Configuration
Program. Click each button to get an in-depth explanation of each option on
the Options page.

100

== DEAmp Configuration Options

o DBAmp Work Directony: I':i"%D BAmpafork Browse |

d

° DEAmp Blob Directany: IE:'&EIDI: Drirzctan’, Browze

DBAMmp Perfarmance Package

° [Enable AP Trace
° Trace Direchony: C:ADBAmplogh Browse |

SOL Server Credentials
é SOL Login Init String: ITrusted_l:Dnnecti-:un=yes

For Integrated Securty, enter: Trusted_Connection=res

For a zpecific SOL User, enter; Trusted_Connection=Ho;JID=Uszerd ; P/D=Pwd

— Pramy [nfarmation
° ™ Lze Prosy for Salesforce connection

Prosyllzermame; I

Priowy Pazzword: I

° Prow UL [Ftpr/7127.0.0.1:8888

Prowy Configl RL: I

| k. I Cancel

1. DBAmp Work Directory

The DBAmp Work Directory holds the work files produced by the
Replicate stored procedures when using the BulkApi or PKChunk
options . Use the browse button to create, find and set the work
directory. Make sure the directory is on a drive with enough space.
Large downloads will expand the size of this directory dramatically.

2. DBAmp Blob Directory

The DBAmp BlobDirectory is a local directory that holds downloaded
files containing the binary field(s) content of a Salesforce object. The
downloaded files are produced by the SF_DownloadBlobs stored
procedure. Use the browse button to create, find and set the blob
directory. Make sure the directory is on a drive with enough space.
Large downloads will expand the size of this directory dramatically.

101

3. Enable API Trace

Enabling the API Trace in the DBAmp Configuration Program allows you
to gather information on API calls, response times from the Salesforce
server, job status information, and other performance based metrics.
The API Trace produces files that contain the APl information in a
directory created by you.

Checking this checkbox turns on the API Trace for DBAmp.

4. Trace Directory

The Trace Directory is used to hold the files created by the API trace.
Use the browse button to create, find and set the trace directory. Make
sure the directory is on a drive with enough space.

5. SQL Login Init String

Enter your SQL Server credentials. If you are using Windows
Authentication or Integrated Security, use the default value of
Trusted_Connection= Yes. For a specific SQL Server user, use the
value of Trusted_Connection=No;UID=Userid;PWD=password

Where userid and password are your SQL Server credentials.

6. Use Proxy for Salesforce connection

Enable a proxy to use for a Salesforce connection by checking the
checkbox. Once enabled, enter valid proxy information for a Salesforce
connection.

7. Proxy Username

Enter the username for the proxy login.

8. Proxy Password

Enter the password for the above username.

9. Proxy URL
Enter a direct proxy URL.

10. Proxy ConfigureURL

Enter a proxy script URL. When a script URL is set but the proxy
address cannot be accessed, for example, the address is only available
inside a corporate network but the user is logging in from home, DBAmp
will use the direct URL if it has been set, or try a direct connection if
the direct URL has not been set.

Registry Settings Page of the DBAmp Configuration Program

To open the Registry Settings page of the DBAmp Configuration Program,
click the Configuration menu choice Registry Settings.

The Registry Settings page is used to configure different settings of
DBAmp. These settings are explained in this section.

102

The following screenshot is of the Registry Settings page of the DBAmp
Configuration Program. Click each button to get an in-depth explanation of
each setting on the Registry Settings page.

== Registry Settings !E[

tetadata Overnde: ||

B azeb4 M aximum Field Size: I]
Metwork, Receive Timeout [zecondz]: I 3000
Metwork, Connect Timeout [zeconds]: I a0

Bulk&Pl Statuz Timeout [secondsz]: I 3600
Bulk &Rl Faling [nterval [zeconds]: I a0
Minimumn Long Size: I 1300

° Convert Currency Fields ta Single Curency: [Translate Picklist Walues: [
° Use UTC for all DateTime Fields: [Use Bit Column Type: [

° Add Assignment Header: [Use MText Column Type: [

Q Use TriggerDtherEmail Header: [~ Use TrggeiUseEmail Header: [

o Use TriggerdutoFiesponzeEmail Header: [
k. I Cancel |

103

1. Metadata Override

This entry allows you to modify the Scale of a decimal field or the
length of a string field. In some cases, salesforce.com returns data with
a greater scale than the reported metadata allows.

For example, in the RevenueForecast table, the scale of the COMMIT
column is 0. But salesforce returns data for this column using a scale of
2. To alter DBAmp to use 2 as the scale, set the MetadataOverride field
to the following value:

Revenueforecast:Commit(2)

Another example is the Field column in the FieldPermissions table. Use
this to make the column larger so that the field names are not
truncated:

FieldPermissions:Field(100)

If you need to alter multiple fields, separate the entries with a
semicolon.
2. Base64 Maximum Field Size

This entry modifies how DBAmp handles large binary fields when
downloading from Salesforce (like the Body field of Attachments). If the
field has a value greater in length then MaxBase64Size, DBAmp will not
attempt to download the binary conten ts and instead set the value to
NULL.

A value of 0 causes DBAmp to set all Base64 fields to NULL. This is the
initial setting for performance reasons.

Be sure to restart SQL Server after changing this setting.

3. Network Receive Timeout
This entry is the number of seconds DBAmp waits for a response from
the Salesforce server.

I f you are receiving fiOperation Timed Out o
this value. For some organizations you may have to set this as high as

3000 (i.e. 50 minutes).

4. Network Connect Timeou t

This entry is the number of seconds DBAmp waits for a successful

connection to the Salesforce server. Default is 30 seconds.

5. BulkAPI Status Timeout

This entry is the number of seconds DBAmp waits for a BulkAPIjob to
complete. SF_Replicatewith the BulkAPI option ignores this value and
always uses a timeout of 12 hours.

104

6. BulkAPI Polling Interval

This entry is the number of seconds DBAmp waits between querying for
BulkAPI job completion.

7. Minimum Long Size

All nvarchar fields in Salesforce with a length greater than the value will
be created as nvarchar(max). Otherwise, the fields are created as
nvarchar(length) where length is the length of the field.

8. Convert Currency Fields to Single Currency

This entry controls whether DBAmp uses the ConvertCurency function
when retrieving currency amounts from Salesforce. A checked value
forces DBAmp to use the ConvertCurrency function. See chapter 2 of
this manual for more details. This setting does not apply to OpenQuery
selects.

Be sure to restart SQL Server after changing this setting.

9. Translate Picklist Values

This entry controls whether DBAmp uses the ToLabel function when
retrieving picklists from Salesforce. A checked value forces DBAmp to
use the TolLabel function. See chapter 2 of this manual for more details.
This setting does not apply to OpenQuery selects.

Be sure to restart SQL Server after changing this setting.

10. Use UTC for all DateTime Fields

This entry controls whether DBAmp uses UTC time or not. When
returning results to SQL Server, DBAmp onverts datetime values from
UTC into the local timezone. In addition, any datetime values used in a
WHERE clause are assumed to be local times and not UTC times.

A checked value forces DBAmp to always use UTC for all datetime
values.

Be sure to restart SQL Server after changing this setting.

11. Use Bit Column Type

When returning results to SQL Server, DBAmp must choose a datatype
to use for Salesforce.com Checkbox fields. By default, DBAmp uses
VARCHAR(5) and populates the column with either the values of FALSE
or TRUE.

A checked value forces DBAmp to always use the BIT datatype instead
of Salesforce.com Checkbox fields.

Be sure to restart SQL Server after changing this setting.

Note: If you are replicating tables locally, you must run a replicate of
those tables after changing this setting. This will recreate the tables
using the BIT datatype.

105

12. Add Assignment Header

This entry controls whether DBAmp adds an AssignmentHeader to all
requests made to Salesforce.com. A checked value forces DBAmp to
include the header.

Be sure to restart SQL Server after changing this setting.

Note: Setting this registry switch forces DBAmp to add the header to all
DBAmp operations. If you need finer control then use the optional SOAP
header of the SF_BulkOps stored procedure.

13. Use NText Column Type

If not checked, then all long text fields from Salesforce map to
nvarchar(max). A checked value forces DBAmp to make all long text
fields from Salesforce map to ntext.

Be sure to restart SQL Server after changing this setting.

Note: In addition, to use nvarchar(max) with linked servers, Microsoft
requires that you turn on a trace switch to activate the fix: Dbcc
traceon(7309)

14. Use TriggerOtherEmail Header

This entry controls whether DBAmp adds an EmailHeader to all requests
made to salesforce.com. This EmailHeaderindicates whether to trigger
an email outside the organization. A checked value forces DBAmp to
include the header.

Be sure to restart SQL Serve after changing this setting.

Note: Setting this registry switch forces DBAmp to add the header to all
DBAmp operations. If you need finer control then use the optional SOAP
header of the SF_BulkOps stored procedure.

15. Use TriggerUserEmail Header

This entry controls whether DBAmp adds an EmailHeader to all requests
made to salesforce.com. This EmailHeaderindicates whether to trigger
an email that is sent to users in the organization. A checked value
forces DBAmp to include the header.

Be sure to restart SQL Server after changing this setting.

Note: Setting this registry switch forces DBAmp to add the header to all
DBAmp operations. If you need finer control then use the optional SOAP
header of the SF_BulkOps stored procedure.

16. Use TriggerAutoResponseEmail Header

This entry controls whether DBAmp adds an EmailHeader to all requests
made to salesforce.com. This EmailHeaderindicates whether to trigger
auto-response rules for leads and cases. A checked value forces DBAmp
to include the header.

106

Be sure to restart SQL Server after changing this setting.

Note: Setting this registry switch forces DBAmp to add the header to all
DBAmp operations. If you need finer control then use the optional SOAP
header of the SF_BulkOps stored procedure.

107

Chapter 11: Retrieving Salesforce Metadata

DBAmp can retrieve Salesforce metadata information using the Salesforce
metadata api. The SF_Metadata stored procedure implements this
functionality.

A couple of items to note when using this functionality:

1. Due to the nature of Salesforce metadata information, the metadata
is returned to an XML type column in Salesforce. Knowledge of the
XML column type and the use of XQuery expressions in SQL Select
statements is required to produce results.

2. The SF_Metadata stored procedure implements the List and
Retrieve functions of the Salesforce Metadata APIl. These functions
require specific type and member inputs as defined in the Salesforce

Met adata API Devel operds Guide found at
http://www.salesforce.com/us/developer/docs/api_meta/index.htm

Successfully using SF_Metadata is not possible without a r eview of
the Metadata APl Guide and an understanding of metadata types.

How to run the SF_Metadata proc

The SF_Metadat stored proc can be executed in a query window or job
step.

Note : The SF_Metadata stored procedure uses the xp_cmdshell command.
If you are not an SQL Server administrator, you must have the proper
permission to use this command. See the SQL Serverdocumentation under
the topic xp_cmdshell for more information. To quickly test, run the
following sql in Query Analyzer:

Exec master.. xp_cmdshell "dir"
To run the SF_Metadata stored procedure, use the following command:
Exec SF_Metadata 'List', 'SALESFORCE, 'MD_Input'
Or
Exec SF_Metadata 'Retrieve’, 'SALESFORCE, 'MD_Input'

where 'SALESFORCE' is the name you gave your linked server in at
installation and MD_Input is the name of the input table to use.

Using the LIST and RETRIEVE operations

The SF_Metadata stored procedure takes as input an operation of either
List or Retrieve .

The Retrive operation is used to retrieve xml representations of
components in an organization. The input table contains rows that your
provide which indicate the components you want to retrieve.

108

http://www.salesforce.com/us/developer/docs/api_meta/index.htm

The List operation is used when you want a high-level view of particular
metadata types in your organization. For example, you could use this
operation to return a list of names of all the CustomObject or Layout
components in your organization, and use this information to make a
subsequent SF_Metadata call with the Retrieve operation to return a
subset of these components.

Requirements for the input tabl e

Conceptually, the SF_ Metadata proc takes as input a local SQL Server
table you create that is designated as the "input" table. The input table
name must not contain embedded blanks. Though not enforced, a naming
standard for the input table to SF_Meta data should be used. For
example, an input table used to retrieve Settings information could be
called MD_Settings

The input table must have the following structure:
CREATE TABLE MD_Settingé
[Name] [nvarchar](255) NULL,
[Member] [nvarchar](255) NULL,
[MetadataXML] [xmI] NULL,
[CreatedByWildcard] [bit] NULL,
[CreatedByList] [bit] NULL,
[Error] [nvarchar](255) NULL,

[Id] [nchar](18) NULL

109

The purpose of each column is described below:

Name Type

Name

Member

MetadataXML

CreatedByWildcard

CreatedBylList

Error

110

Nvarchar(255)
NULL

Nvarchar(255)
NULL

xml
NULL

bit
NULL

bit
NULL

Nvarchar(255)
NULL

nchar(18)
NULL

The type of metadata component to be retrieved.
For example, a value of CustomObject will retrieve
one or more custom objects as specified in the
member column

One or more named components, or the wildcard
character (*) to retrieve all custom metadata
components of the type specified in the <name>
element. To retrieve a standard object, specify it by
name. For example a value of Account will retrieve
the standard Account object.

The xml describing the component is output to this
colum as a result of the Retrieve operation. The
xml contents are described by compenent in the
salesforce Metadata APl documentation.

Upon input this column should be NULL.

If an asterisk was used for the Member column
and the operation is Retrieve, then new rows will
be created with a value of TRUE for this column.
When the SF_Metadata procedure is executed
again with operation Retrieve, the rows containing
TRUE will be deleted and repopulated again.

Upon input this column should be NULL.

If an asterisk was used for the Member column
and the operation is List, then new rows will be
created with a value of TRUE for this column.
When the SF_Metadata procedure is executed
again with operation List, the rows containing
TRUE will be deleted and repopulated again.

Upon input this column should be NULL.

The Error column is an output column and is
populated with any error messages that are
returned from the salesforce server.

Upon input this column should be NULL.

Specifies the ID of the component as returned by
the salesforce server.

Example: Retrieve Dependent Picklist Information

This example shows the steps needed to retrieve all dependent Picklist
information for the Lead Object.

1. Create an empty input table:

CREATE TABLE MD_LeadPicklists (
[Name] [nvarchar](255) NULL,
[Member] [nvarchar](255) NULL,
[MetadataXML] [xmI] NULL,
[CreatedByWildcard] [bit] NULL,
[CreatedByList] [bit] NULL,
[Error] [nvarchar](255) NULL,
[1d] [nchar](18) NULL

)
2. Populate the input table. Insert a single row into the table with the
Name column of CustomObject and the Member column of Lead
INSERT INTO MD_LeadPicklists (Name,Member)
Values ('CustomObject’, 'Lead")
3. Run the SF_Metadata proc to retrieve the information.
Exec SF_Metadata 'Retrieve’, 'Salesforce', 'MD_LeadPicklists'
4. Run the following query against the table to generate the results:
- Query to select dependent picklists
; WITH XMLNAMESPACESEFAULT 'http://soap.sforce.com/2006/04/metadata’) SELECT
Member
,fn . c.value ('(../././fullName)[1] , 'nvarchar(50)') as FieldName
, fn . c. value ('(../../controllingField)[1]' , 'nvarchar(50)') as
ControllingFieldName
,fn . c.value ('(../valueName)[1] , 'nvarchar(50)') as Picklistvalue
fn . c.value ('()[1] , 'nvarchar(50)') as ControllingPicklistValue

FROMMD_LeadPicklists
cross apply metadataxml . nodes
('/CustomObject/fields/valueSet/valueSettings/controllingFieldValue')y as fn (c)

111

5. Result:

Member FieldName ControllingFieldNa PicklistValue ControllingPicklistValue
Lead Productinterest__c Industry GC1000 series Agriculture
Lead Productinterest__c Industry GC1000 series Apparel

Lead Productinterest__c Industry GC1000 series Banking

Lead Productinterest__c Industry GC1000 series Biotechnology
Lead Productinterest__c Industry GC1000 series Construction
Lead Productinterest__c Industry GC1000 series Education
Lead Productinterest__c Industry GC5000 series Biotechnology
Lead Productinterest__ ¢ Industry GC5000 series Chemicals
Lead Productinterest__c Industry GC5000 series Construction
Lead Productinterest__c Industry GC5000 series Electronics

Example: Retrieve Field Descriptions

This example shows how to retrieve field description information using the
salesforce metadata api.

Drop Table MD_FieldDesc
go

CREATETABLE MD_FieldDesc (
[Name] [nvarchar] (255) NULL,
[Member] [nvarchar] (255) NULL,

[MetadataXML] [xml] NULL,
[CreatedByWildcard] [bit] NULL,
[CreatedByList] [bit] NULL,

[Error] [nvarchar] (255) NULL,
[Id] [nchar] (18) NULL
)

INSERT INTO MD_FieldDesc (Name Member) Values ('CustomObject’ , ™')
-- Get a list of objects with customer fields

Exec SF_Metadata ‘'List' , 'Salesforce' , 'MD_FieldDesc'

- Cleanup wildcard and objects that will error

[

'SiteChangelList'

Delete MD_FieldDesc where Member
Delete MD_FieldDesc where Member

-- Retrieve the field metadata

112

Exec SF_Metadata ‘Retrieve’ , 'Salesforce’ , 'MD_FieldDesc'

-~ Query to select descriptions
; WITH XMLNAMESPACESEFAULT

‘http://soap.sforce.com/2006/04/metadata’) SELECT Member
,fn . c. value ('(fullName)[1]' , 'nvarchar(50)') as FieldName
, fn . c. value ('(description)[1]' , 'nvarchar(50)') as Description

-- fn.c.value('(../fullName)[1]','nvarchar(50)") as PicklistValue
Jfn.c.value('(.)[1]",'nvarchar(50)") as ControllingPicklistValue

FROMMD_FieldDesc

cross apply metadataxml . nodes ('/CustomObiject/fields') as fn(c)

113

Chapter 12: Using DBAmp PerformancePackage

The DBAmp Performance package allows you to capture the message output
from the DBAmp stored procedures and summarize the information into
performance metrics.

There are many reasons to use the DBAmp Performance Package(DPP):

1 DPP aeates a DBAmp_Logtable to log all message output from
stored procedure execution, this allows you to locate message
output errors

1 DPP aeates views to summarize SF_Replicate, SF_Refresh, and
SF_Bulkops

9 DPP dlows you to view run times, number of rows copied, deleted,
updated, inserted, etc.

1 DPP dlows you to easily view which tables failed

9 DPP dlows you to connect to an outside analytics tool to visualize
performance (ex: Excel)

Using the DBAmp Performance package you can answer questions like:

1 How long does on average does it take to replicate or refresh a
table ?

1 What is the average throughput of sf_ bulkops ?

1 What is the failure rate of the DBAmp stored procedures?

The DBAmp Performance Package contains twocomponents:

1. The DBAmp_Log table that contains the message output from all
stored procedure execution

2. Performance Views that summarize the DBAmp_Log table into a set
of usable performance metrics.

Installing the DBAmp Performance Package

The first step to install the DBAmp Performance Package is to run a script
to create the needed objects.

If you are currently using DBAmp_Log table , installing the DBAmp
Performance package will delete all data in your current
DBAmp_Log.

114

DBAmp_Log can hold up to 250,000 rows, which is approximately 50 MB of
data storage. Once DBAmp_Log reaches 250,000 rows, it deletes ¥ of
itself.

To install the DBAmp Performance Package:

1. Open the file ACreate DBAmMp Perf.

Management Studio but do not execute it yet. The file is located in
the \Program Files DBAmpP\SQL directory.

2. Make sure the default database shown on the toolbar is the
salesforce backups database (and not the main database). Then,
execute (F5) to add the script to the database.

3. In order to make sure that the Create DBAmp Performance script
worked properly, perform two actions:

Verifying

Run the statement below to verify that the DBAmp_Log table was
created:

Select * from DBAmp_Log

You should see a table similar to the screenshot below:

= Results _'_3] Messagesl

S5PMame Status Message LogTime

115

sql o

A Under Views , in the salesforce backups database under Object
Explorer , check to see that the three performance views were created.
It should look similar to the screenshot provided below:

- [Databases
+ [System Databases
+ [Database Snapshots
= | J salesforce backups
+ [Database Diagrarns
¥ [Tables
o g Views
+ [System Views
+ [dbo.DBAmMp_BulkOps_Perf
+ [} dbo.DEAmp_Refresh_Perf
+ [} dbo.DBAmp_Replicate_Perf

If these are
working properly
you are ready to
begin using the
DBAmp Performance Package.

Using th e DBAmp_Log Table

All DBAmp stored procedures write their output message to the DBAmp_Log
table created by the DBAmp Performance Package. By querying the
DBAmp_Log table , you can view the message output from recently
executed DBAmp stored procedures. This allows you to view information
and find any errors related to each DBAmp stored procedure execution. The
columns in the table are:

[Results |[J3y Messages

SF_Replicate:39212D54-0F 1B-4A19-846C-4DB2FBE48378

116

Mezsage

17:46:18: DBAmp Bulk Operations. ¥2.20.4 (c) Copy...

SPName Status Message LogTime

1 | SF_Replicate:42842B81-ABEA-4DBE-ATEA-GCY7EZADDCIE | Starting Parameters: SALESFORCE Account 2015-05-26 17:00:00.373
2 SF_Replicate 42842B81-AGEA-4DBE-ATEABCSTE2A0DCIE Message Drop Account_Previous f it exists. 2015-05-26 17:.00:00.383
3 SF_Replicate 42842B81-AGEA-4DBE-ATEA-BCSTE2A0DCYE Message Create Account_Previous with new structure. 2015-05-26 17:00:00.383
4 SF_Replicate:42842B81-AGEA-4DBE-A1EA-GCSTE2A0DCSE Message Run the DBAmp exe program. 2015-05-26 17:00:00.730
5 SF_Replicate 42842B81-AGEA4DBE-ATEAGCSTE2A0DCIE Message 17:00:00: DBAmp Bulk Operations. V2.20.4 (c) Copy... 2015-05-26 17:00:02.727
& SF_Replicate 42842B81-AGEA-4DBE-ATEABCSTE2A0DCIE Message 17:00:00: Populating local table Account_Previous , ... 2015-05-26 17:00:02.730
7 SF_Replicate 42842B81-AGEA-4DBE-ATEA-BCSTE2A0DCYE Message 17:00:00: DBAmp ig using the SQL Native Client. 2015-05-26 17:00:02.730
g SF_Replicate:42842B81-AGEA-4DBE-A1EA-GCSTE2A0DCSE Message 17:00:00: Opening SQL Server rowset 2015-05-26 17:00:02.730
5 SF_Replicate 42842B81-AGEA4DBE-ATEAGCSTE2A0DCIE Message 17:00:02: 3367 rows copied. 2015-05-26 17:00:02.730
10 SF_Replicate:42842B81-AGEA4DBE-ATEAGCITEZA0DCIE Messags Drop Account f it exists. 2015-05-26 17:00:02.733
11 SF_Replicate 42842B81-AGEA-4DBE-ATEA-BCSTE2A0DCYE Message Rename previous table from Account_Previousto A... 2015-05-26 17:00:02.737
12 5F_Replicate:42842B81-AGEA-4DBE-A1EA-BCSTE2A0DCSE Message Create primary key on Account 2015-05-26 17:00:02.737
13 SF_Replicate:42842B81-A6EA-4DBE-ATEA-BCSTE2A0DCSE Successful Ending - Operation Successful. 2015-05-26 17:00:02.753
14 SF_ReplicateAll:3FDOCTEQ-6DA4-45E2-B60E-FD7EIDATDS Starting Parameters: SALESFORCE 2015-05-26 17:46:11.760
15 5F_Replicate:35212D54-0F 1B-4A15-846C-4DB2FEE48378 Starting Parameters: SALESFORCE AcceptedEventRelation 2015-05-26 17:46:18.77,
16 5F_Replicate:35212D54-0F 1B-4A15-846C-4DB2FBE48378 Message Drop AcceptedEvent Relation_Previous if it exists. 2015-05-26 17:46:18.777

7 SF_Replicate:35212054-0F1B-4415-846C-4DB2FBE48378 Message Create AcceptedEventRelation_Previous with new s... 2015-05-26 17:46:18.777
18 5F_Replicate:35212D54-0F 1B-4A15-846C-4DB2FE48378 Message Fun the DBAmMp exe program. 2015-05-26 17:46:18.853
19

2015-05-26 17:46:19.310

Column Name Documentation

SPName Unique ID of each execution

Status Status of the execution

Message All messagesrelated to each execution

LogTime The date and time the execution started
(status = starting) and ended (status =
successful/failed)

Run the statement below to select all rows and columns of the DBAmp_Log Table:

Select * from DBAmp_Log

Using the Performance Views
Why Views?

- The views summarize the raw message output in the DBAmp_Log table
into views that can be analyzed for performance.

- The views can be used to import performance data into Excel or other
analytical tools

There are three performance views included in the DBAmp Performance
Package. The three views and their documentation are listed below:

DBAmp_Replicate_Perf view

The DBAmp_Replicate_Perf view contains the data and metrics of all
SF_Replicate, SF_ReplicatelAD, and SF_Replicaexecuted. The columns
in the view are:

117

[T Results |_Jd
SPName LogTime LinkedServer Object RowsCopied Failed
1 | SF_Replicate:028D7A6A-B270 4A3B-BAEA BFO25BABFIBC | 20150526 17:48:13.667 SALESFORCE OpportunityStage 10 1 False
2 SF_Replicate:03F3407F-6B4D-4244-8539-185B51A4A1D2 2015-05-26 17:48:37.193 SALESFORCE ThirdPartyAccount Link] 1 False
3 5F_Replicate:04F533C1-0180-4260-AC84-EEBCI20201D3 2015-05-26 17:46:47.533 SALESFORCE Campaign 4 1 False
4 SF_Replicate:055438FC-1273-49B6-AFES-7DDE30259A72 20150526 174728043 SALESFORCE CustomPemissionDependency 0 1 False
5 SF_Replicate:061020F0-EATF-4C20-91B5-B51F7503B4C0 2015-05-26 17:48:05.733 SALESFORCE MacroHistory [1] 1 False
6 SF_Replicate:07A70340-5041-47F8-ASB7-E4D30588B4AC 2015-05-26 17:47:39.797 SALESFORCE BdemalDataSource] 1 False
7 SF_Replicate:08096C3C-2A73-43D3-BFAE-7406248FB00B 2015-05-26 17:46:31.607 SALESFORCE AccountShare] 1 False
8 SF_Replicate:08375692-0ATE-4436-BB48-ETBO0ED201FET 2015-05-26 17:47:08.970 SALESFORCE CollaborationGroup 1 1 False
SF_Replicate 0ABATIES-BHA34B29-9A73-22947AB46A76 2015-05-26 17:47:11.377 SALESFORCE Contact 28 1 False
SF_Replicate:0AFA1EB6-BBET-420E-A4B7-BBFB5SBFBECTF 2015-05-26 17:47:12.453 SALESFORCE ContactHistory [1] 1 False
SF_Replicate:0C5081A8-DEF4-44BC-AFFS-3F364FDEFTD1 2015-05-26 17:47:45.180 SALESFORCE GrartedBylicense 1] 1 False
SF_Replicate:0E24E691-31BD-4F25-9771-21BE822EDCOE 2015-05-26 17:48:14.180 SALESFORCE Order] 1 False
SF_Replicate:0E680703-4290-4E64-A384-137F504B9278 2015-05-26 17:46:41.640 SALESFORCE Attachment 1 1 False
SF_Replicate:0ES1AFB0-8F43-4489-BCOF-E2E599AEF61 2015-05-26 17:47:32.173 SALESFORCE DcSocialProfileHandle 0 1 True
SF_Replicate:0F2C2507-40B8-405C-8EC1-07FF1EOCTAFE 2015-05-26 17:47:55.837 SALESFORCE LoginHistory 740 5 False
SF_Replicate: OFF36702-F1A8-4860-9751-864A6FE14022 2015-05-26 17:46:30.370 SALESFORCE AccourtContactRole 1] 1 False
SF_Replicate: 14B7FDE3-03F3-4415-A1DC-BI62FBAF6720 2015-05-26 17:47.57.417 SALESFORCE LeadHistory] 1 False
SF_Replicate: 150FFCCF-84F5-4018-83A2-B3837A16084C 2015-05-26 1747:37.650 SALESFORCE EntityDefinition 386 1 False
SF_Replicate: 1582DB45-4B70-4C3B-9217-745D6FBOC280 2015-05-26 17:48:28.097 SALESFORCE Recentlyiewed 50 1 False

Column Name Documentation

SPName

Unique ID of each execution

LogTime

The date and time the execution started
(status = starting) and ended (status =
successful/failed)

LinkedServer

Name of the DBAmp linked server used

Object

Name of object

RowsCopied

Number of rows copied during each
execution

RunTimeSeconds

Number of seconds the execution took to
run

Failed

If the execution failed or not (True =
failed)

L R R e

mdmormooas ®

19

Column Name

Run the statement below to select all rows and columns of the
DBAmp_Replicate_Perf:

Select * from DBAmMp_Replicate_Perf

| DBAmp_Refresh_Perf

view

The DBAmp_Refresh_Perf view contains the data and metrics of all SF_Refresh and
SF_RefreshlAD executed. The columns in the view are:

= Resuts Ii} Messages

SPName

| SF_Refresh:93E061B9-B4EC 4D03-BISC BDD255B39067

SF_Refresh:895FB393-6DE5-45E3-3DAS-0A1E4280D561
SF_Refresh:EG509F15-0801-4EBC-B7DA-SAD 15ABAFEF2
SF_Refresh:2B61BA16-4BC3-497B-BDAG-53CEFF5SFE2D
SF_Refresh:DO2CAZ23-65CA-4454-8778-8C334162E21F
SF_Refresh:37B5025B-E005-4837-B531-6AFSD5B77EGE
SF_Refresh:AB2CE37F-5EB5-4F 2B-8DAF-959799D08EC4
SF_Refresh:2DF72750-8FE3-45FC-ADSE-DBBS43CDDFEE
SF_Refresh:FDA21ADE-1BAB-4403-33BD-52CYEECG012C
SF_Refresh:ASCIDECE-A320-4F73-A18A-37958D5FE451
SF_Refresh:B252C601-0F83-4BEF-BEDB-FBFACT16365E
SF_Refresh:65E6E9CS-CD59-469A-9FEA-BEASDBS 77079
SF_Refresh:B77E84DD-FDAS-4AG0-BODE-204584480150
SF_Refresh:FCB7BCBS-52FE-41AC-B337-732C6A3FD44C
SF_Refresh:FBEB266E-4C84-4407-BEDF-843F03CCD335
SF_Refresh:ED2CBEAS-EBID-4503-96E4-A739852437A7
SF_Refresh:970AB258-385F-4900-8EAF-157042656C12
SF_Refresh:CEBASFAG-S5E4-44E3-BCAE-ECCSES2FS05C
SF_Refresh:46A25A3E-FO57-47ED-892C-CC529472D04A

SPName

LogTime

| 20150526 19:24:10.680

2015-05-26 19:24:10.950
2015-05-26 19:24:11 257
2015-05-26 19:24:11 643
2015-05-26 19:24:11 817
2015-05-26 19:24:12.080
2015-05-26 19:24:12.250
2015-05-26 19:24:12 427
2015-05-26 19:24:12 643
2015-05-26 19:24:12.850
2015-05-26 19:24:13.083
2015-05-26 19:24:13 447
2015-05-26 19:24:13 677
2015-05-26 19:24:13.840
2015-05-26 19:24:14 037
2015-05-26 19:24:16.210
2015-05-26 19:24:17 207
2015-05-26 19:24:17 520
2015-05-26 19:24:18.233

LinkedServer

SALESFORCE
SALESFORCE
SALESFORCE
SALESFORCE
SALESFORCE
SALESFORCE
SALESFORCE
SALESFORCE
SALESFORCE
SALESFORCE
SALESFORCE
SALESFORCE
SALESFORCE
SALESFORCE
SALESFORCE
SALESFORCE
SALESFORCE
SALESFORCE
SALESFORCE

Object RowsUpdatedOrinseted ~ RowsDeleted ~ RunTimeSeconds Failed
AcceptedEventRelation 0] 1 False
Account 0 a 1 False
AccountCleaninfo 1] a 1 False
AccountContact Role 0 a 1 False
Account History 0 a 1 False
AccountParner 1] a 1 False
ActionLinkGroupTemplate D a 1 False
ActionLink Template 0 a 1 False
AdditionalNumber 1] a 1 False
Announcement 0 a 1 False
ApexClass 0 a 1 False
ApexComponent 0 a 1 False
ApexLog 0 a 1 False
ApexPage 1] 0 1 False
ApexTestQueuetem 0 a 2 False
ApexTestResult 0 a 1 False
ApexTrigger 1] 0 1 False
AppMenultem 0 a 1 False
Asset 0 a 1 False

Documentation

Unique ID of each execution

118

LogTime The date and time the execution started
(status = starting) and ended (status =
successful/failed)

LinkedServer Name of the DBAmp linked server used

Object Name of object

RowsUpdatedOrinserted Number of rows updated/inserted

RowsDeleted Number of rows deleted

RunTimeSeconds Number of seconds the execution took to
run

Failed If the execution failed or not (True =
failed)

Run the statement below to select all rows and columns of the
DBAmp_Refresh_Perf:

Select * from DBAmMp_Refresh_Perf

DBAmp_BulkOps_Perf view

The DBAmp_BulkOps_Perf view contains the data and metrics of all SF_BulkOps
executed. The columns in the view are:

[Resuts |3 Messages
SPName LogTime BukOpsAction LinkedServer LoadTable RowsRead RowsSuccessful RowsFaled RunTimeSeconds Falled
1 ESF_BquOps:ﬂ542246E—1GSHBD&M?HD?GZTA?D?Q? - 20150526 19:3343400 Update SALESFORCE Account_Update 40 20 2 1 True
2 SF_BukOps:CDECABBD-45AS-4BO2-SE72-41ABETED2856 20150526 19:34:42.903 Update SALESFORCE Accourt_lnsert 0 0 0 1 False
3 SF_BukOps:4EGCF233L951-4854-BD3CR761FD268C0 20150526 19:34.51.813 Insert SALESFORCE Account_lnsert 0 0 0 1 False
4 SF_BukOps:08727ABT-94D7-460A-B0AD-1TFATECI4E4F 20150526 19:35:46.340 Update SALESFORCE Account_Update2 2 2 0 1 False
5 SF_BukOps:264D2096-828C-491B-9F97-0DEBRFFES141 20150526 19:35:53.600 Update SALESFORCE Account_Updated 2 2 0 1 False
Column Name Documentation
SPName Unique ID of each execution
LogTime The date and time the execution started
(status = starting) and ended (status =
successful/failed)
BulkOpsAction The execution action (update, insert,
upsert, delete, etc.)
LinkedServer Name of the DBAmp linked server used

119

LoadTable

Name of the local SQL input table used
containing the data

RowsRead Total number of rows read during each
execution

RowsSuccessful Number of rows successfully read

RowsFailed Number of rows that failed

RunTimeSeconds

Number of seconds the execution took to
run

Failed

If the execution failed or not (True =
failed)

Run the statement below to select all rows and columns of the

DBAmp_BulkOps_Perf:

Select * from DBAmMp_BulkOps_Perf

Using Excel with the Performance Views

To import data from the SQL Performance views into Excel spreadsheets and pivot
tables, visit the Using Excel section in chapter 8: Using Excel with Views to
. Below is an example of how you could use the performance

Linked Server Tables
view data for analysis:

The screenshot below is of performance data from the DBAmp_Replicate_Perf view
fed into Excel for analysis purposes:

4/23/2015 10:02 SALESFORCE
4/30,/2015 14:06 SALESFORCE
4/23/2015 9:55 SALESFORCE
4/73/2015 9:55 SALESFORCE
4/30,/2015 13:59 SALESFORCE
4/30,/2015 13:56 SALESFORCE
4/23/2015 9:54 SALESFORCE
4/23/2015 9:54 SALESFORCE
4/73/2015 9:53 SALESFORCE
4/30,/2015 13:59 SALESFORCE
4/30,/2015 14:00 S4LESFORCE
4/30,/2015 13:59 SALESFORCE
4/73/2015 9:54 SALESFORCE
4/30,/2015 13:59 SALESFORCE
4/30,/2015 13:59 SALESFORCE
4/30,/2015 14:00 S4LESFORCE

R S T

= e =
R R T T =1

Account

Account
FieldPermissions
LoginHistory
LoginHistory
Account

Account
ApexiClass

AT Workspace_ History
FieldPermissions
FieldPermissions
Account

Contact

Contact

Contact
Recentlywiewed

- - 4 -

3341 17|False
3341 16 |False
5263 11|False
345 T|False
514 6|False
3341 4|False
3341 4|False

20 3|False

i} 3|False
5263 2|False
5263 2|False
3341 2|False
2309 2|False
2305 2|False
2305 2|False
219 2|False

The graph below is of the performance data shown above. In this example, it is
showing you the time it took for the stored procedures to execute vs. the number of
rows that were copied for each execution. Below is an example of a performance
measure that you can see by using the DBAmp Performance Package:

120

= -
1=} =]

RunTirne Seconds

2

Time vs. Rows Copied

ACCOUNT
Account

FieldPermisdons

LoginHistory
LoginHistony:

Account

Apexil ass
RecenthMiewed Contact Account FieldPerrnisdons

1001 2001 3001 4001 5001
Rows Copied

Enabling the Performance Trace

Enabling the Performance Trace in the DBAmp Coniguration Program allows you to
gather information on API calls, response times from the Salesforce server, what a
job is actually doing, and other performance based metrics. The Performance Trace
produces files that contain the performance information in a directory created by
you on the C: drive.

To enable and use the Performance Trace takesfive steps:

Note: Al | of these steps must be performed on the SQL Server machine
where DBAmp is installed.

1.

Create anew directory called c:\DBAmpLogThis tells DBAmpwhere to put
the file output from the Performance Trace. Be sure to set the Security of
this directory to allow READ and WRITE access to the User group.To check
this, right click on the DBAmpLog directory, choose Properties Click on the
Security tab of the DBAmpLog Properties dialog box In the Group or user
names box, highlight Users. In the Permissions for Users box, make sure
Write has a checkmark under the Allow column.

Run the DBAmp Configuration Program, navigate to menu choice Options,
and check the Enable Performance Trace checkbox. Checking this
checkbox turns on the Performance Trace for DBAmMp.

Enter the directory you created on the C: drive in the Trace Directory

textbox. Be sure the directory entered has already been created on the C:
drive and is a valid directory. It should look similar to the screenshot below:

121

DBAMmp Perfarmance Package

V¥ Enable Perfarmance Trace

Trace Directany: IE:"\D Bamplogh

4. Click Ok on the Options page.

5. Run the query displayed by clicking Ok in SQL Management Studio.

To review the performance information produced, view the files in the created
directory on the C: drive. To turn off the Performance trace, uncheck the Enable

Performance Trace checkbox on the Options page of the DBAmp Configuration
Program.

122

